Optimal. Leaf size=25 \[ e^{\frac {2 x-\frac {9}{\log \left (3+e^x+4 x^2\right )}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-9+2 x \log \left (3+e^x+4 x^2\right )}{x \log \left (3+e^x+4 x^2\right )}\right ) \left (9 e^x x+72 x^2+\left (27+9 e^x+36 x^2\right ) \log \left (3+e^x+4 x^2\right )\right )}{\left (3 x^2+e^x x^2+4 x^4\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9 \exp \left (\frac {-9+2 x \log \left (3+e^x+4 x^2\right )}{x \log \left (3+e^x+4 x^2\right )}\right ) \left (3-8 x+4 x^2\right )}{x \left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )}+\frac {9 \exp \left (\frac {-9+2 x \log \left (3+e^x+4 x^2\right )}{x \log \left (3+e^x+4 x^2\right )}\right ) \left (x+\log \left (3+e^x+4 x^2\right )\right )}{x^2 \log ^2\left (3+e^x+4 x^2\right )}\right ) \, dx\\ &=-\left (9 \int \frac {\exp \left (\frac {-9+2 x \log \left (3+e^x+4 x^2\right )}{x \log \left (3+e^x+4 x^2\right )}\right ) \left (3-8 x+4 x^2\right )}{x \left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx\right )+9 \int \frac {\exp \left (\frac {-9+2 x \log \left (3+e^x+4 x^2\right )}{x \log \left (3+e^x+4 x^2\right )}\right ) \left (x+\log \left (3+e^x+4 x^2\right )\right )}{x^2 \log ^2\left (3+e^x+4 x^2\right )} \, dx\\ &=-\left (9 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}} \left (3-8 x+4 x^2\right )}{x \left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx\right )+9 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}} \left (x+\log \left (3+e^x+4 x^2\right )\right )}{x^2 \log ^2\left (3+e^x+4 x^2\right )} \, dx\\ &=-\left (9 \int \left (-\frac {8 e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{\left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )}+\frac {3 e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x \left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )}+\frac {4 e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}} x}{\left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )}\right ) \, dx\right )+9 \int \left (\frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x \log ^2\left (3+e^x+4 x^2\right )}+\frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x^2 \log \left (3+e^x+4 x^2\right )}\right ) \, dx\\ &=9 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x \log ^2\left (3+e^x+4 x^2\right )} \, dx+9 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x^2 \log \left (3+e^x+4 x^2\right )} \, dx-27 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{x \left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx-36 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}} x}{\left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx+72 \int \frac {e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}}}{\left (3+e^x+4 x^2\right ) \log ^2\left (3+e^x+4 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 0.88 \begin {gather*} e^{2-\frac {9}{x \log \left (3+e^x+4 x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 32, normalized size = 1.28 \begin {gather*} e^{\left (\frac {2 \, x \log \left (4 \, x^{2} + e^{x} + 3\right ) - 9}{x \log \left (4 \, x^{2} + e^{x} + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.51, size = 20, normalized size = 0.80 \begin {gather*} e^{\left (-\frac {9}{x \log \left (4 \, x^{2} + e^{x} + 3\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 33, normalized size = 1.32
method | result | size |
risch | \({\mathrm e}^{\frac {2 x \ln \left ({\mathrm e}^{x}+4 x^{2}+3\right )-9}{x \ln \left ({\mathrm e}^{x}+4 x^{2}+3\right )}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.03, size = 21, normalized size = 0.84 \begin {gather*} {\mathrm {e}}^2\,{\mathrm {e}}^{-\frac {9}{x\,\ln \left ({\mathrm {e}}^x+4\,x^2+3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________