Optimal. Leaf size=33 \[ \frac {1}{3} \left (-\frac {-2+e^{1+x}}{x}+x\right ) \left (-1+\frac {x}{2}+\frac {x^2}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2+2 e^{1+x} x^2-2 x^4+\left (4 x^2+6 x^4+e^{1+x} \left (-2 x^2-2 x^3\right )\right ) \log (x)+\left (4-2 x^2+2 x^3+e^{1+x} \left (-2+2 x-x^2\right )\right ) \log ^2(x)}{6 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \frac {-4 x^2+2 e^{1+x} x^2-2 x^4+\left (4 x^2+6 x^4+e^{1+x} \left (-2 x^2-2 x^3\right )\right ) \log (x)+\left (4-2 x^2+2 x^3+e^{1+x} \left (-2+2 x-x^2\right )\right ) \log ^2(x)}{x^2 \log ^2(x)} \, dx\\ &=\frac {1}{6} \int \left (\frac {\left (2-e^{1+x}+2 x\right ) \left (2-2 x+x^2\right )}{x^2}+\frac {2 \left (-2+e^{1+x}-x^2\right )}{\log ^2(x)}+\frac {4+6 x^2-2 e^{1+x} (1+x)}{\log (x)}\right ) \, dx\\ &=\frac {1}{6} \int \frac {\left (2-e^{1+x}+2 x\right ) \left (2-2 x+x^2\right )}{x^2} \, dx+\frac {1}{6} \int \frac {4+6 x^2-2 e^{1+x} (1+x)}{\log (x)} \, dx+\frac {1}{3} \int \frac {-2+e^{1+x}-x^2}{\log ^2(x)} \, dx\\ &=\frac {1}{6} \int \left (-\frac {e^{1+x} \left (2-2 x+x^2\right )}{x^2}+\frac {2 \left (2-x^2+x^3\right )}{x^2}\right ) \, dx+\frac {1}{6} \int \left (-\frac {2 e^{1+x} (1+x)}{\log (x)}+\frac {2 \left (2+3 x^2\right )}{\log (x)}\right ) \, dx+\frac {1}{3} \int \left (\frac {e^{1+x}}{\log ^2(x)}+\frac {-2-x^2}{\log ^2(x)}\right ) \, dx\\ &=-\left (\frac {1}{6} \int \frac {e^{1+x} \left (2-2 x+x^2\right )}{x^2} \, dx\right )+\frac {1}{3} \int \frac {2-x^2+x^3}{x^2} \, dx+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx+\frac {1}{3} \int \frac {-2-x^2}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{1+x} (1+x)}{\log (x)} \, dx+\frac {1}{3} \int \frac {2+3 x^2}{\log (x)} \, dx\\ &=-\left (\frac {1}{6} \int \left (e^{1+x}+\frac {2 e^{1+x}}{x^2}-\frac {2 e^{1+x}}{x}\right ) \, dx\right )+\frac {1}{3} \int \left (-1+\frac {2}{x^2}+x\right ) \, dx+\frac {1}{3} \int \left (-\frac {2}{\log ^2(x)}-\frac {x^2}{\log ^2(x)}\right ) \, dx-\frac {1}{3} \int \left (\frac {e^{1+x}}{\log (x)}+\frac {e^{1+x} x}{\log (x)}\right ) \, dx+\frac {1}{3} \int \left (\frac {2}{\log (x)}+\frac {3 x^2}{\log (x)}\right ) \, dx+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx\\ &=-\frac {2}{3 x}-\frac {x}{3}+\frac {x^2}{6}-\frac {1}{6} \int e^{1+x} \, dx-\frac {1}{3} \int \frac {e^{1+x}}{x^2} \, dx+\frac {1}{3} \int \frac {e^{1+x}}{x} \, dx+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {x^2}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{1+x}}{\log (x)} \, dx-\frac {1}{3} \int \frac {e^{1+x} x}{\log (x)} \, dx-\frac {2}{3} \int \frac {1}{\log ^2(x)} \, dx+\frac {2}{3} \int \frac {1}{\log (x)} \, dx+\int \frac {x^2}{\log (x)} \, dx\\ &=-\frac {e^{1+x}}{6}-\frac {2}{3 x}+\frac {e^{1+x}}{3 x}-\frac {x}{3}+\frac {x^2}{6}+\frac {e \text {Ei}(x)}{3}+\frac {2 x}{3 \log (x)}+\frac {x^3}{3 \log (x)}+\frac {2 \text {li}(x)}{3}-\frac {1}{3} \int \frac {e^{1+x}}{x} \, dx+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{1+x}}{\log (x)} \, dx-\frac {1}{3} \int \frac {e^{1+x} x}{\log (x)} \, dx-\frac {2}{3} \int \frac {1}{\log (x)} \, dx-\int \frac {x^2}{\log (x)} \, dx+\operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {e^{1+x}}{6}-\frac {2}{3 x}+\frac {e^{1+x}}{3 x}-\frac {x}{3}+\frac {x^2}{6}+\text {Ei}(3 \log (x))+\frac {2 x}{3 \log (x)}+\frac {x^3}{3 \log (x)}+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{1+x}}{\log (x)} \, dx-\frac {1}{3} \int \frac {e^{1+x} x}{\log (x)} \, dx-\operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {e^{1+x}}{6}-\frac {2}{3 x}+\frac {e^{1+x}}{3 x}-\frac {x}{3}+\frac {x^2}{6}+\frac {2 x}{3 \log (x)}+\frac {x^3}{3 \log (x)}+\frac {1}{3} \int \frac {e^{1+x}}{\log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{1+x}}{\log (x)} \, dx-\frac {1}{3} \int \frac {e^{1+x} x}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 49, normalized size = 1.48 \begin {gather*} \frac {1}{6} \left (e^x \left (-e+\frac {2 e}{x}\right )-\frac {4}{x}-2 x+x^2+\frac {2 x \left (2-e^{1+x}+x^2\right )}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 51, normalized size = 1.55 \begin {gather*} \frac {2 \, x^{4} - 2 \, x^{2} e^{\left (x + 1\right )} + 4 \, x^{2} + {\left (x^{3} - 2 \, x^{2} - {\left (x - 2\right )} e^{\left (x + 1\right )} - 4\right )} \log \relax (x)}{6 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 63, normalized size = 1.91 \begin {gather*} \frac {2 \, x^{4} + x^{3} \log \relax (x) - 2 \, x^{2} e^{\left (x + 1\right )} - 2 \, x^{2} \log \relax (x) - x e^{\left (x + 1\right )} \log \relax (x) + 4 \, x^{2} + 2 \, e^{\left (x + 1\right )} \log \relax (x) - 4 \, \log \relax (x)}{6 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 48, normalized size = 1.45
method | result | size |
risch | \(\frac {x^{3}-2 x^{2}-x \,{\mathrm e}^{x +1}+2 \,{\mathrm e}^{x +1}-4}{6 x}+\frac {x \left (x^{2}-{\mathrm e}^{x +1}+2\right )}{3 \ln \relax (x )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{6} \, x^{2} + \frac {1}{3} \, {\rm Ei}\relax (x) e - \frac {1}{3} \, e \Gamma \left (-1, -x\right ) - \frac {1}{3} \, x - \frac {x e^{\left (x + 1\right )}}{3 \, \log \relax (x)} - \frac {2}{3 \, x} - \frac {1}{6} \, e^{\left (x + 1\right )} - \frac {2}{3} \, \Gamma \left (-1, -\log \relax (x)\right ) - \Gamma \left (-1, -3 \, \log \relax (x)\right ) + \frac {1}{6} \, \int \frac {2 \, {\left (3 \, x^{2} + 2\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.72, size = 56, normalized size = 1.70 \begin {gather*} \frac {2\,x}{3\,\ln \relax (x)}-\frac {{\mathrm {e}}^{x+1}}{6}-\frac {x}{3}+\frac {{\mathrm {e}}^{x+1}}{3\,x}+\frac {x^3}{3\,\ln \relax (x)}-\frac {2}{3\,x}+\frac {x^2}{6}-\frac {x\,{\mathrm {e}}^{x+1}}{3\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 51, normalized size = 1.55 \begin {gather*} \frac {x^{2}}{6} - \frac {x}{3} + \frac {x^{3} + 2 x}{3 \log {\relax (x )}} + \frac {\left (- 2 x^{2} - x \log {\relax (x )} + 2 \log {\relax (x )}\right ) e^{x + 1}}{6 x \log {\relax (x )}} - \frac {2}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________