Optimal. Leaf size=35 \[ x+\frac {\log \left (\left (x+\frac {x+\left (-\frac {3}{5}+x\right ) x}{4+x}\right ) \log \left (x^2\right )\right )}{2-e^x} \]
________________________________________________________________________________________
Rubi [F] time = 39.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {176+124 x+20 x^2+e^x \left (-88-62 x-10 x^2\right )+\left (88+256 x+134 x^2+20 x^3+e^x \left (-44-216 x-129 x^2-20 x^3\right )+e^{2 x} \left (44 x+31 x^2+5 x^3\right )\right ) \log \left (x^2\right )+e^x \left (44 x+31 x^2+5 x^3\right ) \log \left (x^2\right ) \log \left (\frac {\left (22 x+10 x^2\right ) \log \left (x^2\right )}{20+5 x}\right )}{\left (176 x+124 x^2+20 x^3+e^x \left (-176 x-124 x^2-20 x^3\right )+e^{2 x} \left (44 x+31 x^2+5 x^3\right )\right ) \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {4-2 e^x}{\log \left (x^2\right )}+\frac {88+256 x+134 x^2+20 x^3+e^{2 x} x \left (44+31 x+5 x^2\right )-e^x \left (44+216 x+129 x^2+20 x^3\right )+e^x x \left (44+31 x+5 x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{44+31 x+5 x^2}}{\left (2-e^x\right )^2 x} \, dx\\ &=\int \left (1+\frac {2 \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2}+\frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right ) x (4+x) (11+5 x) \log \left (x^2\right )}\right ) \, dx\\ &=x+2 \int \frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2} \, dx+\int \frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right ) x (4+x) (11+5 x) \log \left (x^2\right )} \, dx\\ &=x+2 \int \frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2} \, dx+\int \frac {2 \left (44+31 x+5 x^2\right )-\log \left (x^2\right ) \left (-44-40 x-5 x^2+x \left (44+31 x+5 x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )\right )}{\left (2-e^x\right ) x (4+x) (11+5 x) \log \left (x^2\right )} \, dx\\ &=x+2 \int \frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2} \, dx+\int \left (\frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{44 \left (-2+e^x\right ) x \log \left (x^2\right )}+\frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{36 \left (-2+e^x\right ) (4+x) \log \left (x^2\right )}-\frac {25 \left (-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )\right )}{99 \left (-2+e^x\right ) (11+5 x) \log \left (x^2\right )}\right ) \, dx\\ &=x+\frac {1}{44} \int \frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right ) x \log \left (x^2\right )} \, dx+\frac {1}{36} \int \frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right ) (4+x) \log \left (x^2\right )} \, dx-\frac {25}{99} \int \frac {-88-62 x-10 x^2-44 \log \left (x^2\right )-40 x \log \left (x^2\right )-5 x^2 \log \left (x^2\right )+44 x \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+31 x^2 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )+5 x^3 \log \left (x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right ) (11+5 x) \log \left (x^2\right )} \, dx+2 \int \frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2} \, dx\\ &=x+\frac {1}{44} \int \frac {2 \left (44+31 x+5 x^2\right )-\log \left (x^2\right ) \left (-44-40 x-5 x^2+x \left (44+31 x+5 x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )\right )}{\left (2-e^x\right ) x \log \left (x^2\right )} \, dx+\frac {1}{36} \int \frac {2 \left (44+31 x+5 x^2\right )-\log \left (x^2\right ) \left (-44-40 x-5 x^2+x \left (44+31 x+5 x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )\right )}{\left (2-e^x\right ) (4+x) \log \left (x^2\right )} \, dx-\frac {25}{99} \int \frac {2 \left (44+31 x+5 x^2\right )-\log \left (x^2\right ) \left (-44-40 x-5 x^2+x \left (44+31 x+5 x^2\right ) \log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )\right )}{\left (2-e^x\right ) (11+5 x) \log \left (x^2\right )} \, dx+2 \int \frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{\left (-2+e^x\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 31, normalized size = 0.89 \begin {gather*} x-\frac {\log \left (\frac {2 x (11+5 x) \log \left (x^2\right )}{5 (4+x)}\right )}{-2+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 38, normalized size = 1.09 \begin {gather*} \frac {x e^{x} - 2 \, x - \log \left (\frac {2 \, {\left (5 \, x^{2} + 11 \, x\right )} \log \left (x^{2}\right )}{5 \, {\left (x + 4\right )}}\right )}{e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.63, size = 42, normalized size = 1.20 \begin {gather*} \frac {x e^{x} - 2 \, x - \log \left (10 \, x \log \left (x^{2}\right ) + 22 \, \log \left (x^{2}\right )\right ) + \log \left (5 \, x + 20\right ) - \log \relax (x)}{e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.72, size = 1672, normalized size = 47.77
method | result | size |
risch | \(-\frac {\ln \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )}{{\mathrm e}^{x}-2}+\frac {-i \pi \,\mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{4+x}\right )-i \pi \mathrm {csgn}\left (\frac {\left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right )^{3}-i \pi \mathrm {csgn}\left (\frac {\left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x +\frac {11}{5}\right )\right ) \mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {\left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {\left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x}{4+x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (x +\frac {11}{5}\right )}{4+x}\right ) \mathrm {csgn}\left (\frac {i}{4+x}\right )+i \pi \,\mathrm {csgn}\left (i \left (x +\frac {11}{5}\right )\right ) \mathrm {csgn}\left (i \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +\frac {11}{5}\right ) \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\right )+i \pi +2 \,{\mathrm e}^{x} x -4 x -2 \ln \relax (x )+2 \ln \left (4+x \right )-2 \ln \left (x +\frac {11}{5}\right )}{2 \,{\mathrm e}^{x}-4}\) | \(1672\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 42, normalized size = 1.20 \begin {gather*} \frac {x e^{x} - 2 \, x + \log \relax (5) - 2 \, \log \relax (2) - \log \left (5 \, x + 11\right ) + \log \left (x + 4\right ) - \log \relax (x) - \log \left (\log \relax (x)\right )}{e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.12, size = 32, normalized size = 0.91 \begin {gather*} x-\frac {\ln \left (\frac {\ln \left (x^2\right )\,\left (10\,x^2+22\,x\right )}{5\,x+20}\right )}{{\mathrm {e}}^x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.86, size = 26, normalized size = 0.74 \begin {gather*} x - \frac {\log {\left (\frac {\left (10 x^{2} + 22 x\right ) \log {\left (x^{2} \right )}}{5 x + 20} \right )}}{e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________