Optimal. Leaf size=31 \[ \frac {1}{16 x \left (2-4 \left (e^{\frac {x}{x+\frac {x}{-5+x}}}+\log (16)\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16+8 x-x^2+e^{\frac {-5+x}{-4+x}} \left (32-14 x+2 x^2\right )+\left (32-16 x+2 x^2\right ) \log (16)}{512 x^2-256 x^3+32 x^4+e^{\frac {2 (-5+x)}{-4+x}} \left (2048 x^2-1024 x^3+128 x^4\right )+\left (-2048 x^2+1024 x^3-128 x^4\right ) \log (16)+\left (2048 x^2-1024 x^3+128 x^4\right ) \log ^2(16)+e^{\frac {-5+x}{-4+x}} \left (-2048 x^2+1024 x^3-128 x^4+\left (4096 x^2-2048 x^3+256 x^4\right ) \log (16)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {5+x}{-4+x}} \left (16-7 x+x^2\right )+e^{\frac {10}{-4+x}} (-4+x)^2 (-1+\log (256))}{32 (4-x)^2 x^2 \left (2 e^{\frac {x}{-4+x}}+e^{\frac {5}{-4+x}} (-1+\log (256))\right )^2} \, dx\\ &=\frac {1}{32} \int \frac {2 e^{\frac {5+x}{-4+x}} \left (16-7 x+x^2\right )+e^{\frac {10}{-4+x}} (-4+x)^2 (-1+\log (256))}{(4-x)^2 x^2 \left (2 e^{\frac {x}{-4+x}}+e^{\frac {5}{-4+x}} (-1+\log (256))\right )^2} \, dx\\ &=\frac {1}{32} \int \left (\frac {e^{\frac {5}{-4+x}} \left (16-7 x+x^2\right )}{(4-x)^2 x^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )}+\frac {e^{\frac {10}{-4+x}} (1-\log (256))}{(4-x)^2 x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2}\right ) \, dx\\ &=\frac {1}{32} \int \frac {e^{\frac {5}{-4+x}} \left (16-7 x+x^2\right )}{(4-x)^2 x^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )} \, dx+\frac {1}{32} (1-\log (256)) \int \frac {e^{\frac {10}{-4+x}}}{(4-x)^2 x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2} \, dx\\ &=\frac {1}{32} \int \left (\frac {e^{\frac {5}{-4+x}}}{4 (4-x)^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )}+\frac {e^{\frac {5}{-4+x}}}{16 (4-x) \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )}+\frac {e^{\frac {5}{-4+x}}}{x^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )}+\frac {e^{\frac {5}{-4+x}}}{16 x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )}\right ) \, dx+\frac {1}{32} (1-\log (256)) \int \left (\frac {e^{\frac {10}{-4+x}}}{4 (4-x)^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2}+\frac {e^{\frac {10}{-4+x}}}{16 (4-x) \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2}+\frac {e^{\frac {10}{-4+x}}}{16 x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2}\right ) \, dx\\ &=\frac {1}{512} \int \frac {e^{\frac {5}{-4+x}}}{(4-x) \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )} \, dx+\frac {1}{512} \int \frac {e^{\frac {5}{-4+x}}}{x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )} \, dx+\frac {1}{128} \int \frac {e^{\frac {5}{-4+x}}}{(4-x)^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )} \, dx+\frac {1}{32} \int \frac {e^{\frac {5}{-4+x}}}{x^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )} \, dx+\frac {1}{512} (1-\log (256)) \int \frac {e^{\frac {10}{-4+x}}}{(4-x) \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2} \, dx+\frac {1}{512} (1-\log (256)) \int \frac {e^{\frac {10}{-4+x}}}{x \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2} \, dx+\frac {1}{128} (1-\log (256)) \int \frac {e^{\frac {10}{-4+x}}}{(4-x)^2 \left (2 e^{\frac {x}{-4+x}}-e^{\frac {5}{-4+x}} (1-\log (256))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.39, size = 32, normalized size = 1.03 \begin {gather*} -\frac {e^{\frac {1}{-4+x}}}{32 x \left (2 e+e^{\frac {1}{-4+x}} (-1+\log (256))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 26, normalized size = 0.84 \begin {gather*} -\frac {1}{32 \, {\left (2 \, x e^{\left (\frac {x - 5}{x - 4}\right )} + 8 \, x \log \relax (2) - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 27, normalized size = 0.87 \begin {gather*} -\frac {1}{32 \, {\left (2 \, x e^{\left (-\frac {x}{4 \, {\left (x - 4\right )}} + \frac {5}{4}\right )} + 8 \, x \log \relax (2) - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.58, size = 26, normalized size = 0.84
method | result | size |
risch | \(-\frac {1}{32 x \left (-1+2 \,{\mathrm e}^{\frac {x -5}{x -4}}+8 \ln \relax (2)\right )}\) | \(26\) |
norman | \(\frac {\frac {1}{8}-\frac {x}{32}}{x \left (x -4\right ) \left (-1+2 \,{\mathrm e}^{\frac {x -5}{x -4}}+8 \ln \relax (2)\right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 30, normalized size = 0.97 \begin {gather*} -\frac {e^{\left (\frac {1}{x - 4}\right )}}{32 \, {\left (x {\left (8 \, \log \relax (2) - 1\right )} e^{\left (\frac {1}{x - 4}\right )} + 2 \, x e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {8\,x+4\,\ln \relax (2)\,\left (2\,x^2-16\,x+32\right )+{\mathrm {e}}^{\frac {x-5}{x-4}}\,\left (2\,x^2-14\,x+32\right )-x^2-16}{{\mathrm {e}}^{\frac {x-5}{x-4}}\,\left (4\,\ln \relax (2)\,\left (256\,x^4-2048\,x^3+4096\,x^2\right )-2048\,x^2+1024\,x^3-128\,x^4\right )+16\,{\ln \relax (2)}^2\,\left (128\,x^4-1024\,x^3+2048\,x^2\right )+{\mathrm {e}}^{\frac {2\,\left (x-5\right )}{x-4}}\,\left (128\,x^4-1024\,x^3+2048\,x^2\right )-4\,\ln \relax (2)\,\left (128\,x^4-1024\,x^3+2048\,x^2\right )+512\,x^2-256\,x^3+32\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 24, normalized size = 0.77 \begin {gather*} - \frac {1}{64 x e^{\frac {x - 5}{x - 4}} - 32 x + 256 x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________