Optimal. Leaf size=31 \[ \frac {4 x (1+x)}{\left (4-\frac {e^x}{x}\right ) \left (-e^{e^2}+x+\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^2-16 x^3+16 x^4+e^x \left (4 x-4 x^3+4 x^4\right )+e^{e^2} \left (-16 x^2-32 x^3+e^x \left (8 x+8 x^2-4 x^3\right )\right )+\left (16 x^2+32 x^3+e^x \left (-8 x-8 x^2+4 x^3\right )\right ) \log (x)}{e^{2 x} x^2-8 e^x x^3+16 x^4+e^{2 e^2} \left (e^{2 x}-8 e^x x+16 x^2\right )+e^{e^2} \left (-2 e^{2 x} x+16 e^x x^2-32 x^3\right )+\left (2 e^{2 x} x-16 e^x x^2+32 x^3+e^{e^2} \left (-2 e^{2 x}+16 e^x x-32 x^2\right )\right ) \log (x)+\left (e^{2 x}-8 e^x x+16 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (-4 e^{e^2} x (1+2 x)+e^{e^2+x} \left (2+2 x-x^2\right )+4 x \left (-1-x+x^2\right )+e^x \left (1-x^2+x^3\right )+\left (4 x (1+2 x)+e^x \left (-2-2 x+x^2\right )\right ) \log (x)\right )}{\left (e^x-4 x\right )^2 \left (e^{e^2}-x-\log (x)\right )^2} \, dx\\ &=4 \int \frac {x \left (-4 e^{e^2} x (1+2 x)+e^{e^2+x} \left (2+2 x-x^2\right )+4 x \left (-1-x+x^2\right )+e^x \left (1-x^2+x^3\right )+\left (4 x (1+2 x)+e^x \left (-2-2 x+x^2\right )\right ) \log (x)\right )}{\left (e^x-4 x\right )^2 \left (e^{e^2}-x-\log (x)\right )^2} \, dx\\ &=4 \int \left (\frac {4 x^2 \left (-1+x^2\right )}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )}+\frac {x \left (1+2 e^{e^2}+2 e^{e^2} x-\left (1+e^{e^2}\right ) x^2+x^3-2 \log (x)-2 x \log (x)+x^2 \log (x)\right )}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {x \left (1+2 e^{e^2}+2 e^{e^2} x-\left (1+e^{e^2}\right ) x^2+x^3-2 \log (x)-2 x \log (x)+x^2 \log (x)\right )}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2} \, dx+16 \int \frac {x^2 \left (-1+x^2\right )}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )} \, dx\\ &=4 \int \left (\frac {2 e^{e^2} \left (1+\frac {e^{-e^2}}{2}\right ) x}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2}+\frac {2 e^{e^2} x^2}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2}-\frac {\left (1+e^{e^2}\right ) x^3}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2}+\frac {x^4}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2}-\frac {2 x \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2}-\frac {2 x^2 \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2}+\frac {x^3 \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2}\right ) \, dx+16 \int \left (-\frac {x^2}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )}+\frac {x^4}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )}\right ) \, dx\\ &=4 \int \frac {x^4}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2} \, dx+4 \int \frac {x^3 \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2} \, dx-8 \int \frac {x \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2} \, dx-8 \int \frac {x^2 \log (x)}{\left (e^x-4 x\right ) \left (-e^{e^2}+x+\log (x)\right )^2} \, dx-16 \int \frac {x^2}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )} \, dx+16 \int \frac {x^4}{\left (e^x-4 x\right )^2 \left (-e^{e^2}+x+\log (x)\right )} \, dx+\left (8 e^{e^2}\right ) \int \frac {x^2}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2} \, dx-\left (4 \left (1+e^{e^2}\right )\right ) \int \frac {x^3}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2} \, dx+\left (4 \left (1+2 e^{e^2}\right )\right ) \int \frac {x}{\left (e^x-4 x\right ) \left (e^{e^2}-x-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 32, normalized size = 1.03 \begin {gather*} \frac {4 x^2 (1+x)}{\left (-e^x+4 x\right ) \left (-e^{e^2}+x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 46, normalized size = 1.48 \begin {gather*} \frac {4 \, {\left (x^{3} + x^{2}\right )}}{4 \, x^{2} - x e^{x} - {\left (4 \, x - e^{x}\right )} e^{\left (e^{2}\right )} + {\left (4 \, x - e^{x}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 44, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (x^{3} + x^{2}\right )}}{4 \, x^{2} - x e^{x} - 4 \, x e^{\left (e^{2}\right )} + 4 \, x \log \relax (x) - e^{x} \log \relax (x) + e^{\left (x + e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 32, normalized size = 1.03
method | result | size |
risch | \(-\frac {4 \left (x +1\right ) x^{2}}{\left (4 x -{\mathrm e}^{x}\right ) \left ({\mathrm e}^{{\mathrm e}^{2}}-x -\ln \relax (x )\right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 41, normalized size = 1.32 \begin {gather*} \frac {4 \, {\left (x^{3} + x^{2}\right )}}{4 \, x^{2} - {\left (x - e^{\left (e^{2}\right )} + \log \relax (x)\right )} e^{x} - 4 \, x e^{\left (e^{2}\right )} + 4 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.47, size = 110, normalized size = 3.55 \begin {gather*} \frac {4\,x^2\,\left (4\,x-2\,{\mathrm {e}}^{x+{\mathrm {e}}^2}-{\mathrm {e}}^x+2\,{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x-x^2\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^{x+{\mathrm {e}}^2}-2\,x\,{\mathrm {e}}^x+8\,x^2+4\,x^3+x^2\,{\mathrm {e}}^{x+{\mathrm {e}}^2}+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x-x^2\,{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x\right )}{{\left (4\,x-{\mathrm {e}}^x\right )}^2\,\left (x+1\right )\,\left (x-{\mathrm {e}}^{{\mathrm {e}}^2}+\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 44, normalized size = 1.42 \begin {gather*} \frac {- 4 x^{3} - 4 x^{2}}{- 4 x^{2} - 4 x \log {\relax (x )} + 4 x e^{e^{2}} + \left (x + \log {\relax (x )} - e^{e^{2}}\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________