Optimal. Leaf size=22 \[ 256 x^2 (1+x)^2 \left (1+\frac {1}{4 \log \left (x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.34, antiderivative size = 49, normalized size of antiderivative = 2.23, number of steps used = 23, number of rules used = 9, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6742, 14, 2353, 2306, 2307, 2298, 2310, 2178, 2356} \begin {gather*} 256 x^4+512 x^3+256 x^2+\frac {64 x^2}{\log \left (x^2\right )}+\frac {64 x^4}{\log \left (x^2\right )}+\frac {128 x^3}{\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2178
Rule 2298
Rule 2306
Rule 2307
Rule 2310
Rule 2353
Rule 2356
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (512 x \left (1+3 x+2 x^2\right )-\frac {128 x (1+x)^2}{\log ^2\left (x^2\right )}+\frac {128 x (1+x) (1+2 x)}{\log \left (x^2\right )}\right ) \, dx\\ &=-\left (128 \int \frac {x (1+x)^2}{\log ^2\left (x^2\right )} \, dx\right )+128 \int \frac {x (1+x) (1+2 x)}{\log \left (x^2\right )} \, dx+512 \int x \left (1+3 x+2 x^2\right ) \, dx\\ &=-\left (128 \int \left (\frac {x}{\log ^2\left (x^2\right )}+\frac {2 x^2}{\log ^2\left (x^2\right )}+\frac {x^3}{\log ^2\left (x^2\right )}\right ) \, dx\right )+128 \int \left (\frac {x}{\log \left (x^2\right )}+\frac {3 x^2}{\log \left (x^2\right )}+\frac {2 x^3}{\log \left (x^2\right )}\right ) \, dx+512 \int \left (x+3 x^2+2 x^3\right ) \, dx\\ &=256 x^2+512 x^3+256 x^4-128 \int \frac {x}{\log ^2\left (x^2\right )} \, dx-128 \int \frac {x^3}{\log ^2\left (x^2\right )} \, dx+128 \int \frac {x}{\log \left (x^2\right )} \, dx-256 \int \frac {x^2}{\log ^2\left (x^2\right )} \, dx+256 \int \frac {x^3}{\log \left (x^2\right )} \, dx+384 \int \frac {x^2}{\log \left (x^2\right )} \, dx\\ &=256 x^2+512 x^3+256 x^4+\frac {64 x^2}{\log \left (x^2\right )}+\frac {128 x^3}{\log \left (x^2\right )}+\frac {64 x^4}{\log \left (x^2\right )}+64 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )-128 \int \frac {x}{\log \left (x^2\right )} \, dx+128 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )-256 \int \frac {x^3}{\log \left (x^2\right )} \, dx-384 \int \frac {x^2}{\log \left (x^2\right )} \, dx+\frac {\left (192 x^3\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\left (x^2\right )^{3/2}}\\ &=256 x^2+512 x^3+256 x^4+\frac {192 x^3 \text {Ei}\left (\frac {3 \log \left (x^2\right )}{2}\right )}{\left (x^2\right )^{3/2}}+128 \text {Ei}\left (2 \log \left (x^2\right )\right )+\frac {64 x^2}{\log \left (x^2\right )}+\frac {128 x^3}{\log \left (x^2\right )}+\frac {64 x^4}{\log \left (x^2\right )}+64 \text {li}\left (x^2\right )-64 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )-128 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )-\frac {\left (192 x^3\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\left (x^2\right )^{3/2}}\\ &=256 x^2+512 x^3+256 x^4+\frac {64 x^2}{\log \left (x^2\right )}+\frac {128 x^3}{\log \left (x^2\right )}+\frac {64 x^4}{\log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 49, normalized size = 2.23 \begin {gather*} 256 x^2+512 x^3+256 x^4+\frac {64 x^2}{\log \left (x^2\right )}+\frac {128 x^3}{\log \left (x^2\right )}+\frac {64 x^4}{\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 38, normalized size = 1.73 \begin {gather*} \frac {64 \, {\left (x^{4} + 2 \, x^{3} + x^{2} + 4 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \left (x^{2}\right )\right )}}{\log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 36, normalized size = 1.64 \begin {gather*} 256 \, x^{4} + 512 \, x^{3} + 256 \, x^{2} + \frac {64 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )}}{\log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 36, normalized size = 1.64
method | result | size |
risch | \(256 x^{4}+512 x^{3}+256 x^{2}+\frac {64 x^{2} \left (x^{2}+2 x +1\right )}{\ln \left (x^{2}\right )}\) | \(36\) |
norman | \(\frac {64 x^{2}+128 x^{3}+64 x^{4}+256 x^{2} \ln \left (x^{2}\right )+512 x^{3} \ln \left (x^{2}\right )+256 x^{4} \ln \left (x^{2}\right )}{\ln \left (x^{2}\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.55 \begin {gather*} 256 \, x^{4} + 512 \, x^{3} + 256 \, x^{2} + \frac {32 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.44, size = 27, normalized size = 1.23 \begin {gather*} 256\,x^2\,{\left (x+1\right )}^2+\frac {64\,x^2\,{\left (x+1\right )}^2}{\ln \left (x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 34, normalized size = 1.55 \begin {gather*} 256 x^{4} + 512 x^{3} + 256 x^{2} + \frac {64 x^{4} + 128 x^{3} + 64 x^{2}}{\log {\left (x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________