Optimal. Leaf size=29 \[ 7 \left (e^x+\left (5-x^2\right ) \left (-x-\frac {2}{2+x}+\log (5 x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.65, antiderivative size = 34, normalized size of antiderivative = 1.17, number of steps used = 16, number of rules used = 7, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {1594, 27, 6742, 2194, 44, 43, 2304} \begin {gather*} 7 x^3-7 x^2 \log (5 x)-21 x+7 e^x-\frac {14}{x+2}+35 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 2194
Rule 2304
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {140+70 x-77 x^2+35 x^3+77 x^4+21 x^5+e^x \left (28 x+28 x^2+7 x^3\right )+\left (-56 x^2-56 x^3-14 x^4\right ) \log (5 x)}{x \left (4+4 x+x^2\right )} \, dx\\ &=\int \frac {140+70 x-77 x^2+35 x^3+77 x^4+21 x^5+e^x \left (28 x+28 x^2+7 x^3\right )+\left (-56 x^2-56 x^3-14 x^4\right ) \log (5 x)}{x (2+x)^2} \, dx\\ &=\int \left (7 e^x+\frac {70}{(2+x)^2}+\frac {140}{x (2+x)^2}-\frac {77 x}{(2+x)^2}+\frac {35 x^2}{(2+x)^2}+\frac {77 x^3}{(2+x)^2}+\frac {21 x^4}{(2+x)^2}-14 x \log (5 x)\right ) \, dx\\ &=-\frac {70}{2+x}+7 \int e^x \, dx-14 \int x \log (5 x) \, dx+21 \int \frac {x^4}{(2+x)^2} \, dx+35 \int \frac {x^2}{(2+x)^2} \, dx-77 \int \frac {x}{(2+x)^2} \, dx+77 \int \frac {x^3}{(2+x)^2} \, dx+140 \int \frac {1}{x (2+x)^2} \, dx\\ &=7 e^x+\frac {7 x^2}{2}-\frac {70}{2+x}-7 x^2 \log (5 x)+21 \int \left (12-4 x+x^2+\frac {16}{(2+x)^2}-\frac {32}{2+x}\right ) \, dx+35 \int \left (1+\frac {4}{(2+x)^2}-\frac {4}{2+x}\right ) \, dx-77 \int \left (-\frac {2}{(2+x)^2}+\frac {1}{2+x}\right ) \, dx+77 \int \left (-4+x-\frac {8}{(2+x)^2}+\frac {12}{2+x}\right ) \, dx+140 \int \left (\frac {1}{4 x}-\frac {1}{2 (2+x)^2}-\frac {1}{4 (2+x)}\right ) \, dx\\ &=7 e^x-21 x+7 x^3-\frac {14}{2+x}+35 \log (x)-7 x^2 \log (5 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 32, normalized size = 1.10 \begin {gather*} 7 \left (e^x-3 x+x^3-\frac {2}{2+x}+5 \log (x)-x^2 \log (5 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 50, normalized size = 1.72 \begin {gather*} \frac {7 \, {\left (x^{4} + 2 \, x^{3} - 3 \, x^{2} + {\left (x + 2\right )} e^{x} - {\left (x^{3} + 2 \, x^{2} - 5 \, x - 10\right )} \log \left (5 \, x\right ) - 6 \, x - 2\right )}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 60, normalized size = 2.07 \begin {gather*} \frac {7 \, {\left (x^{4} - x^{3} \log \left (5 \, x\right ) + 2 \, x^{3} - 2 \, x^{2} \log \left (5 \, x\right ) - 3 \, x^{2} + x e^{x} + 5 \, x \log \relax (x) - 6 \, x + 2 \, e^{x} + 10 \, \log \relax (x) - 2\right )}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.17
method | result | size |
default | \(-7 x^{2} \ln \left (5 x \right )+7 x^{3}-21 x +35 \ln \relax (x )-\frac {14}{2+x}+7 \,{\mathrm e}^{x}\) | \(34\) |
risch | \(-7 x^{2} \ln \left (5 x \right )+\frac {7 x^{4}+14 x^{3}+35 x \ln \relax (x )-21 x^{2}+7 \,{\mathrm e}^{x} x +70 \ln \relax (x )-42 x +14 \,{\mathrm e}^{x}-14}{2+x}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 7 \, x^{3} - \frac {7}{2} \, x^{2} {\left (2 \, \log \relax (5) - 1\right )} - 7 \, x^{2} \log \relax (x) - \frac {7}{2} \, x^{2} - 21 \, x - \frac {28 \, e^{\left (-2\right )} E_{2}\left (-x - 2\right )}{x + 2} - \frac {14}{x + 2} + 7 \, \int \frac {{\left (x^{2} + 4 \, x\right )} e^{x}}{x^{2} + 4 \, x + 4}\,{d x} + 35 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.90, size = 38, normalized size = 1.31 \begin {gather*} 7\,{\mathrm {e}}^x-21\,x+35\,\ln \relax (x)-7\,x^2\,\ln \relax (x)-\frac {14}{x+2}-7\,x^2\,\ln \relax (5)+7\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 32, normalized size = 1.10 \begin {gather*} 7 x^{3} - 7 x^{2} \log {\left (5 x \right )} - 21 x + 7 e^{x} + 35 \log {\relax (x )} - \frac {14}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________