Optimal. Leaf size=17 \[ 2-\left (2+e^5\right ) x+\frac {5}{4+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {27, 1850} \begin {gather*} \frac {5}{x+4}-\left (2+e^5\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-37-16 x-2 x^2+e^5 \left (-16-8 x-x^2\right )}{(4+x)^2} \, dx\\ &=\int \left (-2-e^5-\frac {5}{(4+x)^2}\right ) \, dx\\ &=-\left (\left (2+e^5\right ) x\right )+\frac {5}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 1.06 \begin {gather*} \frac {5}{4+x}-\left (2+e^5\right ) (4+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 27, normalized size = 1.59 \begin {gather*} -\frac {2 \, x^{2} + {\left (x^{2} + 4 \, x\right )} e^{5} + 8 \, x - 5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.94 \begin {gather*} -x e^{5} - 2 \, x + \frac {5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 17, normalized size = 1.00
method | result | size |
default | \(-x \,{\mathrm e}^{5}-2 x +\frac {5}{4+x}\) | \(17\) |
risch | \(-x \,{\mathrm e}^{5}-2 x +\frac {5}{4+x}\) | \(17\) |
norman | \(\frac {\left (-{\mathrm e}^{5}-2\right ) x^{2}+37+16 \,{\mathrm e}^{5}}{4+x}\) | \(23\) |
gosper | \(-\frac {x^{2} {\mathrm e}^{5}+2 x^{2}-16 \,{\mathrm e}^{5}-37}{4+x}\) | \(25\) |
meijerg | \(-\frac {37 x}{16 \left (1+\frac {x}{4}\right )}+4 \left (-{\mathrm e}^{5}-2\right ) \left (\frac {x \left (\frac {3 x}{4}+6\right )}{3 x +12}-2 \ln \left (1+\frac {x}{4}\right )\right )+4 \left (-2 \,{\mathrm e}^{5}-4\right ) \left (-\frac {x}{4 \left (1+\frac {x}{4}\right )}+\ln \left (1+\frac {x}{4}\right )\right )-\frac {{\mathrm e}^{5} x}{1+\frac {x}{4}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 15, normalized size = 0.88 \begin {gather*} -x {\left (e^{5} + 2\right )} + \frac {5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.38, size = 15, normalized size = 0.88 \begin {gather*} \frac {5}{x+4}-x\,\left ({\mathrm {e}}^5+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.59 \begin {gather*} - x \left (2 + e^{5}\right ) + \frac {5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________