Optimal. Leaf size=33 \[ \frac {(4+x) \left (3-x \left (-x+\frac {x}{-x+(5+x) \log (x)}\right )\right )}{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2+9 x^3+6 x^4+2 x^5+\left (120 x+4 x^2-50 x^3-29 x^4-4 x^5\right ) \log (x)+\left (-300-120 x+88 x^2+90 x^3+24 x^4+2 x^5\right ) \log ^2(x)}{2 x^4+\left (-20 x^3-4 x^4\right ) \log (x)+\left (50 x^2+20 x^3+2 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (8+9 x+6 x^2+2 x^3\right )+x \left (120+4 x-50 x^2-29 x^3-4 x^4\right ) \log (x)+2 (5+x)^2 \left (-6+2 x^2+x^3\right ) \log ^2(x)}{2 x^2 (x-(5+x) \log (x))^2} \, dx\\ &=\frac {1}{2} \int \frac {x^2 \left (8+9 x+6 x^2+2 x^3\right )+x \left (120+4 x-50 x^2-29 x^3-4 x^4\right ) \log (x)+2 (5+x)^2 \left (-6+2 x^2+x^3\right ) \log ^2(x)}{x^2 (x-(5+x) \log (x))^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 \left (-6+2 x^2+x^3\right )}{x^2}+\frac {100+45 x+9 x^2+x^3}{(5+x) (-x+5 \log (x)+x \log (x))^2}+\frac {-20-10 x-x^2}{(5+x) (-x+5 \log (x)+x \log (x))}\right ) \, dx\\ &=\frac {1}{2} \int \frac {100+45 x+9 x^2+x^3}{(5+x) (-x+5 \log (x)+x \log (x))^2} \, dx+\frac {1}{2} \int \frac {-20-10 x-x^2}{(5+x) (-x+5 \log (x)+x \log (x))} \, dx+\int \frac {-6+2 x^2+x^3}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {25}{(-x+5 \log (x)+x \log (x))^2}+\frac {4 x}{(-x+5 \log (x)+x \log (x))^2}+\frac {x^2}{(-x+5 \log (x)+x \log (x))^2}-\frac {25}{(5+x) (-x+5 \log (x)+x \log (x))^2}\right ) \, dx+\frac {1}{2} \int \left (-\frac {5}{-x+5 \log (x)+x \log (x)}-\frac {x}{-x+5 \log (x)+x \log (x)}+\frac {5}{(5+x) (-x+5 \log (x)+x \log (x))}\right ) \, dx+\int \left (2-\frac {6}{x^2}+x\right ) \, dx\\ &=\frac {6}{x}+2 x+\frac {x^2}{2}+\frac {1}{2} \int \frac {x^2}{(-x+5 \log (x)+x \log (x))^2} \, dx-\frac {1}{2} \int \frac {x}{-x+5 \log (x)+x \log (x)} \, dx+2 \int \frac {x}{(-x+5 \log (x)+x \log (x))^2} \, dx-\frac {5}{2} \int \frac {1}{-x+5 \log (x)+x \log (x)} \, dx+\frac {5}{2} \int \frac {1}{(5+x) (-x+5 \log (x)+x \log (x))} \, dx+\frac {25}{2} \int \frac {1}{(-x+5 \log (x)+x \log (x))^2} \, dx-\frac {25}{2} \int \frac {1}{(5+x) (-x+5 \log (x)+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 36, normalized size = 1.09 \begin {gather*} \frac {1}{2} \left (\frac {12}{x}+4 x+x^2-\frac {x (4+x)}{-x+5 \log (x)+x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 58, normalized size = 1.76 \begin {gather*} \frac {x^{4} + 5 \, x^{3} + 4 \, x^{2} - {\left (x^{4} + 9 \, x^{3} + 20 \, x^{2} + 12 \, x + 60\right )} \log \relax (x) + 12 \, x}{2 \, {\left (x^{2} - {\left (x^{2} + 5 \, x\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 37, normalized size = 1.12 \begin {gather*} \frac {1}{2} \, x^{2} + 2 \, x - \frac {x^{2} + 4 \, x}{2 \, {\left (x \log \relax (x) - x + 5 \, \log \relax (x)\right )}} + \frac {6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 37, normalized size = 1.12
method | result | size |
risch | \(\frac {x^{3}+4 x^{2}+12}{2 x}-\frac {\left (4+x \right ) x}{2 \left (x \ln \relax (x )+5 \ln \relax (x )-x \right )}\) | \(37\) |
norman | \(\frac {-4 x \ln \relax (x )+8 x^{2} \ln \relax (x )-6 x -\frac {5 x^{3}}{2}-\frac {x^{4}}{2}+\frac {9 x^{3} \ln \relax (x )}{2}+\frac {x^{4} \ln \relax (x )}{2}+30 \ln \relax (x )}{x \left (x \ln \relax (x )+5 \ln \relax (x )-x \right )}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 58, normalized size = 1.76 \begin {gather*} \frac {x^{4} + 5 \, x^{3} + 4 \, x^{2} - {\left (x^{4} + 9 \, x^{3} + 20 \, x^{2} + 12 \, x + 60\right )} \log \relax (x) + 12 \, x}{2 \, {\left (x^{2} - {\left (x^{2} + 5 \, x\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.33, size = 60, normalized size = 1.82 \begin {gather*} 2\,x+\frac {6}{x}+\frac {x^2}{2}+\frac {x^5+9\,x^4+45\,x^3+100\,x^2}{2\,\left (x-\ln \relax (x)\,\left (x+5\right )\right )\,\left (x^3+5\,x^2+25\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 31, normalized size = 0.94 \begin {gather*} \frac {x^{2}}{2} + 2 x + \frac {- x^{2} - 4 x}{- 2 x + \left (2 x + 10\right ) \log {\relax (x )}} + \frac {6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________