Optimal. Leaf size=30 \[ -\frac {(6+x) \log (5)}{(-3+x) x (3+x) \left (x+\log \left (\frac {3}{x}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (54-99 x-15 x^2+23 x^3+3 x^4\right ) \log (5)+\left (-54+18 x^2+2 x^3\right ) \log (5) \log \left (\frac {3}{x}\right )}{81 x^4-18 x^6+x^8+\left (162 x^3-36 x^5+2 x^7\right ) \log \left (\frac {3}{x}\right )+\left (81 x^2-18 x^4+x^6\right ) \log ^2\left (\frac {3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (5) \left (54-99 x-15 x^2+23 x^3+3 x^4+2 \left (-27+9 x^2+x^3\right ) \log \left (\frac {3}{x}\right )\right )}{x^2 \left (9-x^2\right )^2 \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx\\ &=\log (5) \int \frac {54-99 x-15 x^2+23 x^3+3 x^4+2 \left (-27+9 x^2+x^3\right ) \log \left (\frac {3}{x}\right )}{x^2 \left (9-x^2\right )^2 \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx\\ &=\log (5) \int \left (\frac {-6+5 x+x^2}{x^2 \left (-9+x^2\right ) \left (x+\log \left (\frac {3}{x}\right )\right )^2}+\frac {2 \left (-27+9 x^2+x^3\right )}{x^2 \left (-9+x^2\right )^2 \left (x+\log \left (\frac {3}{x}\right )\right )}\right ) \, dx\\ &=\log (5) \int \frac {-6+5 x+x^2}{x^2 \left (-9+x^2\right ) \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx+(2 \log (5)) \int \frac {-27+9 x^2+x^3}{x^2 \left (-9+x^2\right )^2 \left (x+\log \left (\frac {3}{x}\right )\right )} \, dx\\ &=\log (5) \int \left (\frac {1}{3 (-3+x) \left (x+\log \left (\frac {3}{x}\right )\right )^2}+\frac {2}{3 x^2 \left (x+\log \left (\frac {3}{x}\right )\right )^2}-\frac {5}{9 x \left (x+\log \left (\frac {3}{x}\right )\right )^2}+\frac {2}{9 (3+x) \left (x+\log \left (\frac {3}{x}\right )\right )^2}\right ) \, dx+(2 \log (5)) \int \left (\frac {1}{4 (-3+x)^2 \left (x+\log \left (\frac {3}{x}\right )\right )}-\frac {1}{3 x^2 \left (x+\log \left (\frac {3}{x}\right )\right )}+\frac {1}{12 (3+x)^2 \left (x+\log \left (\frac {3}{x}\right )\right )}\right ) \, dx\\ &=\frac {1}{6} \log (5) \int \frac {1}{(3+x)^2 \left (x+\log \left (\frac {3}{x}\right )\right )} \, dx+\frac {1}{9} (2 \log (5)) \int \frac {1}{(3+x) \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx+\frac {1}{3} \log (5) \int \frac {1}{(-3+x) \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx+\frac {1}{2} \log (5) \int \frac {1}{(-3+x)^2 \left (x+\log \left (\frac {3}{x}\right )\right )} \, dx-\frac {1}{9} (5 \log (5)) \int \frac {1}{x \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx+\frac {1}{3} (2 \log (5)) \int \frac {1}{x^2 \left (x+\log \left (\frac {3}{x}\right )\right )^2} \, dx-\frac {1}{3} (2 \log (5)) \int \frac {1}{x^2 \left (x+\log \left (\frac {3}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 28, normalized size = 0.93 \begin {gather*} \frac {(-6-x) \log (5)}{x \left (-9+x^2\right ) \left (x+\log \left (\frac {3}{x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 32, normalized size = 1.07 \begin {gather*} -\frac {{\left (x + 6\right )} \log \relax (5)}{x^{4} - 9 \, x^{2} + {\left (x^{3} - 9 \, x\right )} \log \left (\frac {3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 46, normalized size = 1.53 \begin {gather*} -\frac {\frac {\log \relax (5)}{x^{3}} + \frac {6 \, \log \relax (5)}{x^{4}}}{\frac {\log \left (\frac {3}{x}\right )}{x} - \frac {9}{x^{2}} - \frac {9 \, \log \left (\frac {3}{x}\right )}{x^{3}} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 28, normalized size = 0.93
method | result | size |
risch | \(-\frac {\ln \relax (5) \left (x +6\right )}{\left (x^{2}-9\right ) x \left (\ln \left (\frac {3}{x}\right )+x \right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 44, normalized size = 1.47 \begin {gather*} -\frac {x \log \relax (5) + 6 \, \log \relax (5)}{x^{4} + x^{3} \log \relax (3) - 9 \, x^{2} - 9 \, x \log \relax (3) - {\left (x^{3} - 9 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.26, size = 27, normalized size = 0.90 \begin {gather*} -\frac {\ln \relax (5)\,\left (x+6\right )}{x\,\left (x^2-9\right )\,\left (x+\ln \left (\frac {3}{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 31, normalized size = 1.03 \begin {gather*} \frac {- x \log {\relax (5 )} - 6 \log {\relax (5 )}}{x^{4} - 9 x^{2} + \left (x^{3} - 9 x\right ) \log {\left (\frac {3}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________