Optimal. Leaf size=25 \[ \frac {x}{3}-\log \left (-\frac {4}{9}+\frac {1}{2} e^{4-x} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 e+e^{5-x} (-27+36 x)}{-24 e+27 e^{5-x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{3}+\frac {9 e^4 (-1+x)}{-8 e^x+9 e^4 x}\right ) \, dx\\ &=\frac {x}{3}+\left (9 e^4\right ) \int \frac {-1+x}{-8 e^x+9 e^4 x} \, dx\\ &=\frac {x}{3}+\left (9 e^4\right ) \int \left (\frac {1}{8 e^x-9 e^4 x}+\frac {x}{-8 e^x+9 e^4 x}\right ) \, dx\\ &=\frac {x}{3}+\left (9 e^4\right ) \int \frac {1}{8 e^x-9 e^4 x} \, dx+\left (9 e^4\right ) \int \frac {x}{-8 e^x+9 e^4 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 0.92 \begin {gather*} \frac {1}{3} \left (4 x-3 \log \left (8 e^x-9 e^4 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 1.16 \begin {gather*} \frac {1}{3} \, x - \log \relax (x) - \log \left (\frac {9 \, x e^{\left (-x + 5\right )} - 8 \, e}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.72 \begin {gather*} \frac {1}{3} \, x - \log \left (9 \, x e^{\left (-x + 4\right )} - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 22, normalized size = 0.88
method | result | size |
norman | \(\frac {x}{3}-\ln \left (-27 x \,{\mathrm e}^{5-x}+24 \,{\mathrm e}\right )\) | \(22\) |
risch | \(\frac {x}{3}-\ln \relax (x )+5-\ln \left ({\mathrm e}^{5-x}-\frac {8 \,{\mathrm e}}{9 x}\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 15, normalized size = 0.60 \begin {gather*} \frac {4}{3} \, x - \log \left (-\frac {9}{8} \, x e^{4} + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.93, size = 21, normalized size = 0.84 \begin {gather*} \frac {x}{3}-\ln \left (9\,x\,{\mathrm {e}}^{5-x}-8\,\mathrm {e}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.80 \begin {gather*} \frac {x}{3} - \log {\relax (x )} - \log {\left (e^{5 - x} - \frac {8 e}{9 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________