Optimal. Leaf size=25 \[ \frac {x \log \left (e^{6+x+x (3+x (5+x))}\right )}{-x+\log (5)} \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 234, normalized size of antiderivative = 9.36, number of steps used = 14, number of rules used = 6, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {27, 6742, 43, 771, 2551, 698} \begin {gather*} -x^3-5 x^2-\frac {3}{2} x^2 \log (25)+3 x^2 \log (5)-\frac {\log (5) \log \left (e^{x^3+5 x^2+4 x+6}\right )}{x-\log (5)}-4 x+\frac {3 \log ^4(5)}{x-\log (5)}-12 \log ^3(5) \log (x-\log (5))+\frac {10 \log ^3(5)}{x-\log (5)}-9 x \log ^2(5)+\log (5) \left (4+3 \log ^2(5)+10 \log (5)\right ) \log (x-\log (5))-30 \log ^2(5) \log (x-\log (5))-\frac {\log ^2(5) \left (4+3 \log ^2(5)+10 \log (5)\right )}{x-\log (5)}+\frac {4 \log ^2(5)}{x-\log (5)}+x \log (5) (10+\log (125))+2 x \log (5) (5+\log (125))-10 x \log (25)-4 \log (25) \log (x-\log (5))+\log (5) (2+\log (5)) (2+9 \log (5)) \log (x-\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 698
Rule 771
Rule 2551
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^2-10 x^3-3 x^4+\left (4 x+10 x^2+3 x^3\right ) \log (5)+\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{(x-\log (5))^2} \, dx\\ &=\int \left (-\frac {4 x^2}{(x-\log (5))^2}-\frac {10 x^3}{(x-\log (5))^2}-\frac {3 x^4}{(x-\log (5))^2}+\frac {x \left (4+10 x+3 x^2\right ) \log (5)}{(x-\log (5))^2}+\frac {\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{(x-\log (5))^2}\right ) \, dx\\ &=-\left (3 \int \frac {x^4}{(x-\log (5))^2} \, dx\right )-4 \int \frac {x^2}{(x-\log (5))^2} \, dx-10 \int \frac {x^3}{(x-\log (5))^2} \, dx+\log (5) \int \frac {x \left (4+10 x+3 x^2\right )}{(x-\log (5))^2} \, dx+\log (5) \int \frac {\log \left (e^{6+4 x+5 x^2+x^3}\right )}{(x-\log (5))^2} \, dx\\ &=-\frac {\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{x-\log (5)}-3 \int \left (x^2+3 \log ^2(5)+\frac {4 \log ^3(5)}{x-\log (5)}+\frac {\log ^4(5)}{(x-\log (5))^2}+x \log (25)\right ) \, dx-4 \int \left (1+\frac {\log ^2(5)}{(x-\log (5))^2}+\frac {\log (25)}{x-\log (5)}\right ) \, dx-10 \int \left (x+\frac {3 \log ^2(5)}{x-\log (5)}+\frac {\log ^3(5)}{(x-\log (5))^2}+\log (25)\right ) \, dx+\log (5) \int \frac {4+10 x+3 x^2}{x-\log (5)} \, dx+\log (5) \int \left (3 x+\frac {(2+\log (5)) (2+9 \log (5))}{x-\log (5)}+\frac {\log (5) \left (4+10 \log (5)+3 \log ^2(5)\right )}{(x-\log (5))^2}+2 (5+\log (125))\right ) \, dx\\ &=-4 x-5 x^2-x^3+\frac {3}{2} x^2 \log (5)-9 x \log ^2(5)+\frac {4 \log ^2(5)}{x-\log (5)}+\frac {10 \log ^3(5)}{x-\log (5)}+\frac {3 \log ^4(5)}{x-\log (5)}-\frac {\log ^2(5) \left (4+10 \log (5)+3 \log ^2(5)\right )}{x-\log (5)}-10 x \log (25)-\frac {3}{2} x^2 \log (25)+2 x \log (5) (5+\log (125))-\frac {\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{x-\log (5)}-30 \log ^2(5) \log (x-\log (5))-12 \log ^3(5) \log (x-\log (5))+\log (5) (2+\log (5)) (2+9 \log (5)) \log (x-\log (5))-4 \log (25) \log (x-\log (5))+\log (5) \int \left (3 x+10 \left (1+\frac {3 \log (5)}{10}\right )+\frac {4+10 \log (5)+3 \log ^2(5)}{x-\log (5)}\right ) \, dx\\ &=-4 x-5 x^2-x^3+3 x^2 \log (5)-9 x \log ^2(5)+\frac {4 \log ^2(5)}{x-\log (5)}+\frac {10 \log ^3(5)}{x-\log (5)}+\frac {3 \log ^4(5)}{x-\log (5)}-\frac {\log ^2(5) \left (4+10 \log (5)+3 \log ^2(5)\right )}{x-\log (5)}-10 x \log (25)-\frac {3}{2} x^2 \log (25)+2 x \log (5) (5+\log (125))+x \log (5) (10+\log (125))-\frac {\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{x-\log (5)}-30 \log ^2(5) \log (x-\log (5))-12 \log ^3(5) \log (x-\log (5))+\log (5) (2+\log (5)) (2+9 \log (5)) \log (x-\log (5))+\log (5) \left (4+10 \log (5)+3 \log ^2(5)\right ) \log (x-\log (5))-4 \log (25) \log (x-\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 40, normalized size = 1.60 \begin {gather*} -x \left (4+5 x+x^2\right )-\frac {\log (5) \log \left (e^{6+4 x+5 x^2+x^3}\right )}{x-\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 57, normalized size = 2.28 \begin {gather*} -\frac {x^{4} - {\left (x - 5\right )} \log \relax (5)^{3} + \log \relax (5)^{4} + 5 \, x^{3} - {\left (5 \, x - 4\right )} \log \relax (5)^{2} + 4 \, x^{2} - 2 \, {\left (2 \, x - 3\right )} \log \relax (5)}{x - \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 64, normalized size = 2.56 \begin {gather*} -x^{3} - x^{2} \log \relax (5) - x \log \relax (5)^{2} - 5 \, x^{2} - 5 \, x \log \relax (5) - 4 \, x - \frac {\log \relax (5)^{4} + 5 \, \log \relax (5)^{3} + 4 \, \log \relax (5)^{2} + 6 \, \log \relax (5)}{x - \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.72, size = 30, normalized size = 1.20
method | result | size |
norman | \(\frac {x \ln \left ({\mathrm e}^{6} {\mathrm e}^{x^{3}+5 x^{2}+4 x}\right )}{\ln \relax (5)-x}\) | \(30\) |
default | \(-x^{3}-5 x^{2}-4 x -\frac {\ln \relax (5) \ln \left ({\mathrm e}^{6} {\mathrm e}^{x^{3}+5 x^{2}+4 x}\right )}{-\ln \relax (5)+x}\) | \(46\) |
risch | \(\frac {\ln \relax (5) \ln \left ({\mathrm e}^{x \left (x +1\right ) \left (4+x \right )}\right )}{\ln \relax (5)-x}-\frac {-2 x^{3} \ln \relax (5)+2 x^{4}-10 x^{2} \ln \relax (5)+10 x^{3}-8 x \ln \relax (5)+8 x^{2}+12 \ln \relax (5)}{2 \left (-\ln \relax (5)+x \right )}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 59, normalized size = 2.36 \begin {gather*} -x^{3} - x^{2} {\left (\log \relax (5) + 5\right )} - {\left (\log \relax (5)^{2} + 5 \, \log \relax (5) + 4\right )} x - \frac {\log \relax (5)^{4} + 5 \, \log \relax (5)^{3} + 4 \, \log \relax (5)^{2} + 6 \, \log \relax (5)}{x - \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 79, normalized size = 3.16 \begin {gather*} x\,\left (15\,\ln \relax (5)-2\,\ln \relax (5)\,\left (6\,\ln \relax (5)-\ln \left (625\right )+10\right )+3\,{\ln \relax (5)}^2-4\right )-\frac {6\,\ln \relax (5)+\ln \relax (5)\,\ln \left (625\right )+5\,{\ln \relax (5)}^3+{\ln \relax (5)}^4}{x-\ln \relax (5)}-x^3-x^2\,\left (3\,\ln \relax (5)-\frac {\ln \left (625\right )}{2}+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.41, size = 54, normalized size = 2.16 \begin {gather*} - x^{3} - x^{2} \left (\log {\relax (5 )} + 5\right ) - x \left (\log {\relax (5 )}^{2} + 4 + 5 \log {\relax (5 )}\right ) - \frac {\log {\relax (5 )}^{4} + 6 \log {\relax (5 )} + 4 \log {\relax (5 )}^{2} + 5 \log {\relax (5 )}^{3}}{x - \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________