Optimal. Leaf size=24 \[ \frac {\log (4)+\log (\log (4 \log (2)))}{x \left (3+\frac {5+x}{e^3}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 4, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {6, 12, 1680, 261} \begin {gather*} \frac {e^3 \log (4 \log (\log (16)))}{x \left (x+3 e^3+5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-3 e^6+e^3 (-5-2 x)\right ) \log (4)+\left (-3 e^6+e^3 (-5-2 x)\right ) \log (\log (4 \log (2)))}{\left (25+9 e^6\right ) x^2+10 x^3+x^4+e^3 \left (30 x^2+6 x^3\right )} \, dx\\ &=\int \frac {\left (-3 e^6+e^3 (-5-2 x)\right ) (\log (4)+\log (\log (4 \log (2))))}{\left (25+9 e^6\right ) x^2+10 x^3+x^4+e^3 \left (30 x^2+6 x^3\right )} \, dx\\ &=\log (4 \log (\log (16))) \int \frac {-3 e^6+e^3 (-5-2 x)}{\left (25+9 e^6\right ) x^2+10 x^3+x^4+e^3 \left (30 x^2+6 x^3\right )} \, dx\\ &=\log (4 \log (\log (16))) \operatorname {Subst}\left (\int -\frac {32 e^3 x}{\left (25+30 e^3+9 e^6-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (10+6 e^3\right )+x\right )\\ &=-\left (\left (32 e^3 \log (4 \log (\log (16)))\right ) \operatorname {Subst}\left (\int \frac {x}{\left (25+30 e^3+9 e^6-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (10+6 e^3\right )+x\right )\right )\\ &=\frac {e^3 \log (4 \log (\log (16)))}{x \left (5+3 e^3+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.96 \begin {gather*} \frac {e^3 \log (4 \log (\log (16)))}{x \left (5+3 e^3+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 31, normalized size = 1.29 \begin {gather*} \frac {2 \, e^{3} \log \relax (2) + e^{3} \log \left (\log \left (4 \, \log \relax (2)\right )\right )}{x^{2} + 3 \, x e^{3} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 27, normalized size = 1.12
method | result | size |
gosper | \(\frac {{\mathrm e}^{3} \left (\ln \left (\ln \left (4 \ln \relax (2)\right )\right )+2 \ln \relax (2)\right )}{x \left (5+3 \,{\mathrm e}^{3}+x \right )}\) | \(27\) |
norman | \(\frac {2 \,{\mathrm e}^{3} \ln \relax (2)+{\mathrm e}^{3} \ln \left (2 \ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )}{x \left (5+3 \,{\mathrm e}^{3}+x \right )}\) | \(33\) |
risch | \(\frac {2 \,{\mathrm e}^{3} \ln \relax (2)+{\mathrm e}^{3} \ln \left (2 \ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )}{x \left (5+3 \,{\mathrm e}^{3}+x \right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 31, normalized size = 1.29 \begin {gather*} \frac {2 \, e^{3} \log \relax (2) + e^{3} \log \left (\log \left (4 \, \log \relax (2)\right )\right )}{x^{2} + x {\left (3 \, e^{3} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 23, normalized size = 0.96 \begin {gather*} \frac {{\mathrm {e}}^3\,\ln \left (4\,\ln \left (\ln \left (16\right )\right )\right )}{x^2+\left (3\,{\mathrm {e}}^3+5\right )\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.16, size = 37, normalized size = 1.54 \begin {gather*} - \frac {- 2 e^{3} \log {\relax (2 )} - e^{3} \log {\left (\log {\left (\log {\relax (2 )} \right )} + 2 \log {\relax (2 )} \right )}}{x^{2} + x \left (5 + 3 e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________