Optimal. Leaf size=36 \[ 2+e^{3-e^{3-e^{x^2 (-x+\log (4+x))^2}-x}-x} \]
________________________________________________________________________________________
Rubi [A] time = 5.76, antiderivative size = 43, normalized size of antiderivative = 1.19, number of steps used = 1, number of rules used = 1, integrand size = 161, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {6706} \begin {gather*} \exp \left (-\exp \left ((x+4)^{-2 x^3} \left (-e^{x^4+x^2 \log ^2(x+4)}\right )-x+3\right )-x+3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\exp \left (3-\exp \left (3-x-e^{x^4+x^2 \log ^2(4+x)} (4+x)^{-2 x^3}\right )-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 43, normalized size = 1.19 \begin {gather*} e^{3-e^{3-x-e^{x^4+x^2 \log ^2(4+x)} (4+x)^{-2 x^3}}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 40, normalized size = 1.11 \begin {gather*} e^{\left (-x - e^{\left (-x - e^{\left (x^{4} - 2 \, x^{3} \log \left (x + 4\right ) + x^{2} \log \left (x + 4\right )^{2}\right )} + 3\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 34.83, size = 40, normalized size = 1.11 \begin {gather*} e^{\left (-x - e^{\left (-x - e^{\left (x^{4} - 2 \, x^{3} \log \left (x + 4\right ) + x^{2} \log \left (x + 4\right )^{2}\right )} + 3\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 41, normalized size = 1.14
method | result | size |
risch | \({\mathrm e}^{-{\mathrm e}^{-\left (4+x \right )^{-2 x^{3}} {\mathrm e}^{x^{2} \left (\ln \left (4+x \right )^{2}+x^{2}\right )}+3-x}+3-x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 40, normalized size = 1.11 \begin {gather*} e^{\left (-x - e^{\left (-x - e^{\left (x^{4} - 2 \, x^{3} \log \left (x + 4\right ) + x^{2} \log \left (x + 4\right )^{2}\right )} + 3\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.61, size = 45, normalized size = 1.25 \begin {gather*} {\mathrm {e}}^{-{\mathrm {e}}^{-x}\,{\mathrm {e}}^3\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{x^2\,{\ln \left (x+4\right )}^2}}{{\left (x+4\right )}^{2\,x^3}}}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________