Optimal. Leaf size=28 \[ 2-\left (x+\frac {x}{\left (9+e^5+3 x\right ) (-x+\log (x))}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 5.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18 x-156 x^2-276 x^3+1386 x^4+2 e^{15} x^4+1458 x^5+486 x^6+54 x^7+e^{10} \left (-2 x^2-2 x^3+54 x^4+18 x^5\right )+e^5 \left (2 x-36 x^2-48 x^3+480 x^4+324 x^5+54 x^6\right )+\left (144 x+594 x^2-4140 x^3-6 e^{15} x^3-4356 x^4-1458 x^5-162 x^6+e^{10} \left (2 x+6 x^2-162 x^3-54 x^4\right )+e^5 \left (34 x+120 x^2-1434 x^3-972 x^4-162 x^5\right )\right ) \log (x)+\left (-324 x+4212 x^2+6 e^{15} x^2+4356 x^3+1458 x^4+162 x^5+e^{10} \left (-4 x+162 x^2+54 x^3\right )+e^5 \left (-72 x+1440 x^2+972 x^3+162 x^4\right )\right ) \log ^2(x)+\left (-1458 x-2 e^{15} x-1458 x^2-486 x^3-54 x^4+e^{10} \left (-54 x-18 x^2\right )+e^5 \left (-486 x-324 x^2-54 x^3\right )\right ) \log ^3(x)}{-729 x^3-e^{15} x^3-729 x^4-243 x^5-27 x^6+e^{10} \left (-27 x^3-9 x^4\right )+e^5 \left (-243 x^3-162 x^4-27 x^5\right )+\left (2187 x^2+3 e^{15} x^2+2187 x^3+729 x^4+81 x^5+e^{10} \left (81 x^2+27 x^3\right )+e^5 \left (729 x^2+486 x^3+81 x^4\right )\right ) \log (x)+\left (-2187 x-3 e^{15} x-2187 x^2-729 x^3-81 x^4+e^{10} \left (-81 x-27 x^2\right )+e^5 \left (-729 x-486 x^2-81 x^3\right )\right ) \log ^2(x)+\left (729+e^{15}+729 x+243 x^2+27 x^3+e^{10} (27+9 x)+e^5 \left (243+162 x+27 x^2\right )\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 x-156 x^2-276 x^3+1386 x^4+2 e^{15} x^4+1458 x^5+486 x^6+54 x^7+e^{10} \left (-2 x^2-2 x^3+54 x^4+18 x^5\right )+e^5 \left (2 x-36 x^2-48 x^3+480 x^4+324 x^5+54 x^6\right )+\left (144 x+594 x^2-4140 x^3-6 e^{15} x^3-4356 x^4-1458 x^5-162 x^6+e^{10} \left (2 x+6 x^2-162 x^3-54 x^4\right )+e^5 \left (34 x+120 x^2-1434 x^3-972 x^4-162 x^5\right )\right ) \log (x)+\left (-324 x+4212 x^2+6 e^{15} x^2+4356 x^3+1458 x^4+162 x^5+e^{10} \left (-4 x+162 x^2+54 x^3\right )+e^5 \left (-72 x+1440 x^2+972 x^3+162 x^4\right )\right ) \log ^2(x)+\left (-1458 x-2 e^{15} x-1458 x^2-486 x^3-54 x^4+e^{10} \left (-54 x-18 x^2\right )+e^5 \left (-486 x-324 x^2-54 x^3\right )\right ) \log ^3(x)}{\left (-729-e^{15}\right ) x^3-729 x^4-243 x^5-27 x^6+e^{10} \left (-27 x^3-9 x^4\right )+e^5 \left (-243 x^3-162 x^4-27 x^5\right )+\left (2187 x^2+3 e^{15} x^2+2187 x^3+729 x^4+81 x^5+e^{10} \left (81 x^2+27 x^3\right )+e^5 \left (729 x^2+486 x^3+81 x^4\right )\right ) \log (x)+\left (-2187 x-3 e^{15} x-2187 x^2-729 x^3-81 x^4+e^{10} \left (-81 x-27 x^2\right )+e^5 \left (-729 x-486 x^2-81 x^3\right )\right ) \log ^2(x)+\left (729+e^{15}+729 x+243 x^2+27 x^3+e^{10} (27+9 x)+e^5 \left (243+162 x+27 x^2\right )\right ) \log ^3(x)} \, dx\\ &=\int \frac {18 x-156 x^2-276 x^3+\left (1386+2 e^{15}\right ) x^4+1458 x^5+486 x^6+54 x^7+e^{10} \left (-2 x^2-2 x^3+54 x^4+18 x^5\right )+e^5 \left (2 x-36 x^2-48 x^3+480 x^4+324 x^5+54 x^6\right )+\left (144 x+594 x^2-4140 x^3-6 e^{15} x^3-4356 x^4-1458 x^5-162 x^6+e^{10} \left (2 x+6 x^2-162 x^3-54 x^4\right )+e^5 \left (34 x+120 x^2-1434 x^3-972 x^4-162 x^5\right )\right ) \log (x)+\left (-324 x+4212 x^2+6 e^{15} x^2+4356 x^3+1458 x^4+162 x^5+e^{10} \left (-4 x+162 x^2+54 x^3\right )+e^5 \left (-72 x+1440 x^2+972 x^3+162 x^4\right )\right ) \log ^2(x)+\left (-1458 x-2 e^{15} x-1458 x^2-486 x^3-54 x^4+e^{10} \left (-54 x-18 x^2\right )+e^5 \left (-486 x-324 x^2-54 x^3\right )\right ) \log ^3(x)}{\left (-729-e^{15}\right ) x^3-729 x^4-243 x^5-27 x^6+e^{10} \left (-27 x^3-9 x^4\right )+e^5 \left (-243 x^3-162 x^4-27 x^5\right )+\left (2187 x^2+3 e^{15} x^2+2187 x^3+729 x^4+81 x^5+e^{10} \left (81 x^2+27 x^3\right )+e^5 \left (729 x^2+486 x^3+81 x^4\right )\right ) \log (x)+\left (-2187 x-3 e^{15} x-2187 x^2-729 x^3-81 x^4+e^{10} \left (-81 x-27 x^2\right )+e^5 \left (-729 x-486 x^2-81 x^3\right )\right ) \log ^2(x)+\left (729+e^{15}+729 x+243 x^2+27 x^3+e^{10} (27+9 x)+e^5 \left (243+162 x+27 x^2\right )\right ) \log ^3(x)} \, dx\\ &=\int \frac {2 x \left (-e^{15} x^3-e^{10} x \left (-1-x+27 x^2+9 x^3\right )-e^5 \left (1-18 x-24 x^2+240 x^3+162 x^4+27 x^5\right )-3 \left (3-26 x-46 x^2+231 x^3+243 x^4+81 x^5+9 x^6\right )+\left (3 e^{15} x^2+e^{10} \left (-1-3 x+81 x^2+27 x^3\right )+e^5 \left (-17-60 x+717 x^2+486 x^3+81 x^4\right )+9 \left (-8-33 x+230 x^2+242 x^3+81 x^4+9 x^5\right )\right ) \log (x)-\left (3 e^{15} x+e^{10} \left (-2+81 x+27 x^2\right )+9 e^5 \left (-4+80 x+54 x^2+9 x^3\right )+9 \left (-18+234 x+242 x^2+81 x^3+9 x^4\right )\right ) \log ^2(x)+\left (9+e^5+3 x\right )^3 \log ^3(x)\right )}{\left (9+e^5+3 x\right )^3 (x-\log (x))^3} \, dx\\ &=2 \int \frac {x \left (-e^{15} x^3-e^{10} x \left (-1-x+27 x^2+9 x^3\right )-e^5 \left (1-18 x-24 x^2+240 x^3+162 x^4+27 x^5\right )-3 \left (3-26 x-46 x^2+231 x^3+243 x^4+81 x^5+9 x^6\right )+\left (3 e^{15} x^2+e^{10} \left (-1-3 x+81 x^2+27 x^3\right )+e^5 \left (-17-60 x+717 x^2+486 x^3+81 x^4\right )+9 \left (-8-33 x+230 x^2+242 x^3+81 x^4+9 x^5\right )\right ) \log (x)-\left (3 e^{15} x+e^{10} \left (-2+81 x+27 x^2\right )+9 e^5 \left (-4+80 x+54 x^2+9 x^3\right )+9 \left (-18+234 x+242 x^2+81 x^3+9 x^4\right )\right ) \log ^2(x)+\left (9+e^5+3 x\right )^3 \log ^3(x)\right )}{\left (9+e^5+3 x\right )^3 (x-\log (x))^3} \, dx\\ &=2 \int \left (-x+\frac {(-1+x) x}{\left (9+e^5+3 x\right )^2 (x-\log (x))^3}+\frac {x \left (72+17 e^5+e^{10}-\left (27+12 e^5+e^{10}\right ) x-3 \left (15+2 e^5\right ) x^2-9 x^3\right )}{\left (9+e^5+3 x\right )^3 (x-\log (x))^2}+\frac {x \left (18+2 e^5+3 x\right )}{\left (9+e^5+3 x\right )^2 (x-\log (x))}\right ) \, dx\\ &=-x^2+2 \int \frac {(-1+x) x}{\left (9+e^5+3 x\right )^2 (x-\log (x))^3} \, dx+2 \int \frac {x \left (72+17 e^5+e^{10}-\left (27+12 e^5+e^{10}\right ) x-3 \left (15+2 e^5\right ) x^2-9 x^3\right )}{\left (9+e^5+3 x\right )^3 (x-\log (x))^2} \, dx+2 \int \frac {x \left (18+2 e^5+3 x\right )}{\left (9+e^5+3 x\right )^2 (x-\log (x))} \, dx\\ &=-x^2+2 \int \left (\frac {1}{9 (x-\log (x))^3}+\frac {108+21 e^5+e^{10}}{9 \left (9+e^5+3 x\right )^2 (x-\log (x))^3}+\frac {-21-2 e^5}{9 \left (9+e^5+3 x\right ) (x-\log (x))^3}\right ) \, dx+2 \int \left (\frac {12+e^5}{9 (x-\log (x))^2}-\frac {x}{3 (x-\log (x))^2}+\frac {\left (9+e^5\right )^2}{3 \left (9+e^5+3 x\right )^3 (x-\log (x))^2}+\frac {-9-e^5}{3 \left (9+e^5+3 x\right )^2 (x-\log (x))^2}+\frac {-108-21 e^5-e^{10}}{9 \left (9+e^5+3 x\right ) (x-\log (x))^2}\right ) \, dx+2 \int \left (\frac {1}{3 (x-\log (x))}-\frac {\left (9+e^5\right )^2}{3 \left (9+e^5+3 x\right )^2 (x-\log (x))}\right ) \, dx\\ &=-x^2+\frac {2}{9} \int \frac {1}{(x-\log (x))^3} \, dx-\frac {2}{3} \int \frac {x}{(x-\log (x))^2} \, dx+\frac {2}{3} \int \frac {1}{x-\log (x)} \, dx-\frac {1}{3} \left (2 \left (9+e^5\right )\right ) \int \frac {1}{\left (9+e^5+3 x\right )^2 (x-\log (x))^2} \, dx+\frac {1}{3} \left (2 \left (9+e^5\right )^2\right ) \int \frac {1}{\left (9+e^5+3 x\right )^3 (x-\log (x))^2} \, dx-\frac {1}{3} \left (2 \left (9+e^5\right )^2\right ) \int \frac {1}{\left (9+e^5+3 x\right )^2 (x-\log (x))} \, dx+\frac {1}{9} \left (2 \left (12+e^5\right )\right ) \int \frac {1}{(x-\log (x))^2} \, dx-\frac {1}{9} \left (2 \left (21+2 e^5\right )\right ) \int \frac {1}{\left (9+e^5+3 x\right ) (x-\log (x))^3} \, dx+\frac {1}{9} \left (2 \left (108+21 e^5+e^{10}\right )\right ) \int \frac {1}{\left (9+e^5+3 x\right )^2 (x-\log (x))^3} \, dx-\frac {1}{9} \left (2 \left (108+21 e^5+e^{10}\right )\right ) \int \frac {1}{\left (9+e^5+3 x\right ) (x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 46, normalized size = 1.64 \begin {gather*} -x^2 \left (1+\frac {1}{\left (9+e^5+3 x\right )^2 (x-\log (x))^2}+\frac {2}{\left (9+e^5+3 x\right ) (-x+\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 236, normalized size = 8.43 \begin {gather*} -\frac {9 \, x^{6} + 54 \, x^{5} + x^{4} e^{10} + 75 \, x^{4} - 18 \, x^{3} + {\left (9 \, x^{4} + 54 \, x^{3} + x^{2} e^{10} + 81 \, x^{2} + 6 \, {\left (x^{3} + 3 \, x^{2}\right )} e^{5}\right )} \log \relax (x)^{2} + x^{2} + 2 \, {\left (3 \, x^{5} + 9 \, x^{4} - x^{3}\right )} e^{5} - 2 \, {\left (9 \, x^{5} + 54 \, x^{4} + x^{3} e^{10} + 78 \, x^{3} - 9 \, x^{2} + {\left (6 \, x^{4} + 18 \, x^{3} - x^{2}\right )} e^{5}\right )} \log \relax (x)}{9 \, x^{4} + 54 \, x^{3} + x^{2} e^{10} + {\left (9 \, x^{2} + 6 \, {\left (x + 3\right )} e^{5} + 54 \, x + e^{10} + 81\right )} \log \relax (x)^{2} + 81 \, x^{2} + 6 \, {\left (x^{3} + 3 \, x^{2}\right )} e^{5} - 2 \, {\left (9 \, x^{3} + 54 \, x^{2} + x e^{10} + 6 \, {\left (x^{2} + 3 \, x\right )} e^{5} + 81 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 302, normalized size = 10.79 \begin {gather*} -\frac {9 \, x^{6} + 6 \, x^{5} e^{5} - 18 \, x^{5} \log \relax (x) - 12 \, x^{4} e^{5} \log \relax (x) + 9 \, x^{4} \log \relax (x)^{2} + 6 \, x^{3} e^{5} \log \relax (x)^{2} + 54 \, x^{5} + x^{4} e^{10} + 18 \, x^{4} e^{5} - 108 \, x^{4} \log \relax (x) - 2 \, x^{3} e^{10} \log \relax (x) - 36 \, x^{3} e^{5} \log \relax (x) + 54 \, x^{3} \log \relax (x)^{2} + x^{2} e^{10} \log \relax (x)^{2} + 18 \, x^{2} e^{5} \log \relax (x)^{2} + 75 \, x^{4} - 2 \, x^{3} e^{5} - 156 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{5} \log \relax (x) + 81 \, x^{2} \log \relax (x)^{2} - 18 \, x^{3} + 18 \, x^{2} \log \relax (x) + x^{2}}{9 \, x^{4} + 6 \, x^{3} e^{5} - 18 \, x^{3} \log \relax (x) - 12 \, x^{2} e^{5} \log \relax (x) + 9 \, x^{2} \log \relax (x)^{2} + 6 \, x e^{5} \log \relax (x)^{2} + 54 \, x^{3} + x^{2} e^{10} + 18 \, x^{2} e^{5} - 108 \, x^{2} \log \relax (x) - 2 \, x e^{10} \log \relax (x) - 36 \, x e^{5} \log \relax (x) + 54 \, x \log \relax (x)^{2} + e^{10} \log \relax (x)^{2} + 18 \, e^{5} \log \relax (x)^{2} + 81 \, x^{2} - 162 \, x \log \relax (x) + 81 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 58, normalized size = 2.07
method | result | size |
risch | \(-x^{2}+\frac {\left (2 x \,{\mathrm e}^{5}-2 \,{\mathrm e}^{5} \ln \relax (x )+6 x^{2}-6 x \ln \relax (x )+18 x -18 \ln \relax (x )-1\right ) x^{2}}{\left (9+{\mathrm e}^{5}+3 x \right )^{2} \left (x -\ln \relax (x )\right )^{2}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 196, normalized size = 7.00 \begin {gather*} -\frac {9 \, x^{6} + 6 \, x^{5} {\left (e^{5} + 9\right )} + x^{4} {\left (e^{10} + 18 \, e^{5} + 75\right )} - 2 \, x^{3} {\left (e^{5} + 9\right )} + {\left (9 \, x^{4} + 6 \, x^{3} {\left (e^{5} + 9\right )} + x^{2} {\left (e^{10} + 18 \, e^{5} + 81\right )}\right )} \log \relax (x)^{2} + x^{2} - 2 \, {\left (9 \, x^{5} + 6 \, x^{4} {\left (e^{5} + 9\right )} + x^{3} {\left (e^{10} + 18 \, e^{5} + 78\right )} - x^{2} {\left (e^{5} + 9\right )}\right )} \log \relax (x)}{9 \, x^{4} + 6 \, x^{3} {\left (e^{5} + 9\right )} + x^{2} {\left (e^{10} + 18 \, e^{5} + 81\right )} + {\left (9 \, x^{2} + 6 \, x {\left (e^{5} + 9\right )} + e^{10} + 18 \, e^{5} + 81\right )} \log \relax (x)^{2} - 2 \, {\left (9 \, x^{3} + 6 \, x^{2} {\left (e^{5} + 9\right )} + x {\left (e^{10} + 18 \, e^{5} + 81\right )}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {18\,x+{\mathrm {e}}^5\,\left (54\,x^6+324\,x^5+480\,x^4-48\,x^3-36\,x^2+2\,x\right )-{\ln \relax (x)}^3\,\left (1458\,x+{\mathrm {e}}^{10}\,\left (18\,x^2+54\,x\right )+2\,x\,{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (54\,x^3+324\,x^2+486\,x\right )+1458\,x^2+486\,x^3+54\,x^4\right )+{\ln \relax (x)}^2\,\left ({\mathrm {e}}^{10}\,\left (54\,x^3+162\,x^2-4\,x\right )-324\,x+6\,x^2\,{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (162\,x^4+972\,x^3+1440\,x^2-72\,x\right )+4212\,x^2+4356\,x^3+1458\,x^4+162\,x^5\right )+2\,x^4\,{\mathrm {e}}^{15}-\ln \relax (x)\,\left (6\,x^3\,{\mathrm {e}}^{15}-144\,x-{\mathrm {e}}^{10}\,\left (-54\,x^4-162\,x^3+6\,x^2+2\,x\right )+{\mathrm {e}}^5\,\left (162\,x^5+972\,x^4+1434\,x^3-120\,x^2-34\,x\right )-594\,x^2+4140\,x^3+4356\,x^4+1458\,x^5+162\,x^6\right )-156\,x^2-276\,x^3+1386\,x^4+1458\,x^5+486\,x^6+54\,x^7-{\mathrm {e}}^{10}\,\left (-18\,x^5-54\,x^4+2\,x^3+2\,x^2\right )}{{\ln \relax (x)}^2\,\left (2187\,x+{\mathrm {e}}^{10}\,\left (27\,x^2+81\,x\right )+3\,x\,{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (81\,x^3+486\,x^2+729\,x\right )+2187\,x^2+729\,x^3+81\,x^4\right )-\ln \relax (x)\,\left ({\mathrm {e}}^{10}\,\left (27\,x^3+81\,x^2\right )+3\,x^2\,{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (81\,x^4+486\,x^3+729\,x^2\right )+2187\,x^2+2187\,x^3+729\,x^4+81\,x^5\right )+{\mathrm {e}}^{10}\,\left (9\,x^4+27\,x^3\right )+x^3\,{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (27\,x^5+162\,x^4+243\,x^3\right )+729\,x^3+729\,x^4+243\,x^5+27\,x^6-{\ln \relax (x)}^3\,\left (729\,x+{\mathrm {e}}^{15}+{\mathrm {e}}^5\,\left (27\,x^2+162\,x+243\right )+243\,x^2+27\,x^3+{\mathrm {e}}^{10}\,\left (9\,x+27\right )+729\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 158, normalized size = 5.64 \begin {gather*} - x^{2} + \frac {6 x^{4} + 18 x^{3} + 2 x^{3} e^{5} - x^{2} + \left (- 6 x^{3} - 2 x^{2} e^{5} - 18 x^{2}\right ) \log {\relax (x )}}{9 x^{4} + 54 x^{3} + 6 x^{3} e^{5} + 81 x^{2} + 18 x^{2} e^{5} + x^{2} e^{10} + \left (9 x^{2} + 54 x + 6 x e^{5} + 81 + 18 e^{5} + e^{10}\right ) \log {\relax (x )}^{2} + \left (- 18 x^{3} - 12 x^{2} e^{5} - 108 x^{2} - 2 x e^{10} - 36 x e^{5} - 162 x\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________