Optimal. Leaf size=15 \[ -3+x^2+\left (2+e^{e^x}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 16, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {14, 2282, 2194, 2554} \begin {gather*} x^2+e^{e^x} \log (x)+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2282
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2+e^{e^x}+2 x^2}{x}+e^{e^x+x} \log (x)\right ) \, dx\\ &=\int \frac {2+e^{e^x}+2 x^2}{x} \, dx+\int e^{e^x+x} \log (x) \, dx\\ &=e^{e^x} \log (x)-\int \frac {e^{e^x}}{x} \, dx+\int \left (\frac {e^{e^x}}{x}+\frac {2 \left (1+x^2\right )}{x}\right ) \, dx\\ &=e^{e^x} \log (x)+2 \int \frac {1+x^2}{x} \, dx\\ &=e^{e^x} \log (x)+2 \int \left (\frac {1}{x}+x\right ) \, dx\\ &=x^2+2 \log (x)+e^{e^x} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 1.07 \begin {gather*} x^2+2 \log (x)+e^{e^x} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 14, normalized size = 0.93 \begin {gather*} x^{2} + e^{\left (e^{x}\right )} \log \relax (x) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 26, normalized size = 1.73 \begin {gather*} {\left (x^{2} e^{x} + e^{\left (x + e^{x}\right )} \log \relax (x) + 2 \, e^{x} \log \relax (x)\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 1.00
method | result | size |
risch | \(x^{2}+2 \ln \relax (x )+\ln \relax (x ) {\mathrm e}^{{\mathrm e}^{x}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 14, normalized size = 0.93 \begin {gather*} x^{2} + e^{\left (e^{x}\right )} \log \relax (x) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.00, size = 14, normalized size = 0.93 \begin {gather*} 2\,\ln \relax (x)+{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.16, size = 15, normalized size = 1.00 \begin {gather*} x^{2} + e^{e^{x}} \log {\relax (x )} + 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________