Optimal. Leaf size=16 \[ x \left (-\frac {14}{5}+x+\log (4)+\frac {\log (256)}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 23, normalized size of antiderivative = 1.44, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {12, 6742, 2297, 2298} \begin {gather*} x^2+\frac {x \log (256)}{\log (x)}-\frac {2}{5} x (7-5 \log (2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2297
Rule 2298
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-5 \log (256)+5 \log (256) \log (x)+(-14+10 x+5 \log (4)) \log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {1}{5} \int \left (10 x-14 \left (1-\frac {5 \log (2)}{7}\right )-\frac {5 \log (256)}{\log ^2(x)}+\frac {5 \log (256)}{\log (x)}\right ) \, dx\\ &=x^2-\frac {2}{5} x (7-5 \log (2))-\log (256) \int \frac {1}{\log ^2(x)} \, dx+\log (256) \int \frac {1}{\log (x)} \, dx\\ &=x^2-\frac {2}{5} x (7-5 \log (2))+\frac {x \log (256)}{\log (x)}+\log (256) \text {li}(x)-\log (256) \int \frac {1}{\log (x)} \, dx\\ &=x^2-\frac {2}{5} x (7-5 \log (2))+\frac {x \log (256)}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.31 \begin {gather*} -\frac {14 x}{5}+x^2+x \log (4)+\frac {x \log (256)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 29, normalized size = 1.81 \begin {gather*} \frac {40 \, x \log \relax (2) + {\left (5 \, x^{2} + 10 \, x \log \relax (2) - 14 \, x\right )} \log \relax (x)}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 21, normalized size = 1.31 \begin {gather*} x^{2} + 2 \, x \log \relax (2) - \frac {14}{5} \, x + \frac {8 \, x \log \relax (2)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.38
method | result | size |
risch | \(2 x \ln \relax (2)+x^{2}-\frac {14 x}{5}+\frac {8 x \ln \relax (2)}{\ln \relax (x )}\) | \(22\) |
norman | \(\frac {x^{2} \ln \relax (x )+\left (2 \ln \relax (2)-\frac {14}{5}\right ) x \ln \relax (x )+8 x \ln \relax (2)}{\ln \relax (x )}\) | \(28\) |
default | \(2 x \ln \relax (2)+x^{2}-\frac {14 x}{5}-8 \ln \relax (2) \expIntegralEi \left (1, -\ln \relax (x )\right )-8 \ln \relax (2) \left (-\frac {x}{\ln \relax (x )}-\expIntegralEi \left (1, -\ln \relax (x )\right )\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 29, normalized size = 1.81 \begin {gather*} x^{2} + 2 \, x \log \relax (2) + 8 \, {\rm Ei}\left (\log \relax (x)\right ) \log \relax (2) - 8 \, \Gamma \left (-1, -\log \relax (x)\right ) \log \relax (2) - \frac {14}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.45, size = 22, normalized size = 1.38 \begin {gather*} \frac {x\,\left (5\,x+10\,\ln \relax (2)-14\right )}{5}+\frac {8\,x\,\ln \relax (2)}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 1.38 \begin {gather*} x^{2} + x \left (- \frac {14}{5} + 2 \log {\relax (2 )}\right ) + \frac {8 x \log {\relax (2 )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________