Optimal. Leaf size=32 \[ 4+x-\frac {x}{5-x}+(14+2 x) \left (-x+\frac {\log (x)}{4 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 33, normalized size of antiderivative = 1.03, number of steps used = 16, number of rules used = 7, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.123, Rules used = {1594, 27, 12, 6742, 44, 43, 2304} \begin {gather*} -2 x^2-13 x-\frac {5}{5-x}+\frac {\log (x)}{2}+\frac {7 \log (x)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 2304
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {175-45 x-663 x^2+61 x^3+54 x^4-8 x^5+\left (-175+70 x-7 x^2\right ) \log (x)}{x^2 \left (50-20 x+2 x^2\right )} \, dx\\ &=\int \frac {175-45 x-663 x^2+61 x^3+54 x^4-8 x^5+\left (-175+70 x-7 x^2\right ) \log (x)}{2 (-5+x)^2 x^2} \, dx\\ &=\frac {1}{2} \int \frac {175-45 x-663 x^2+61 x^3+54 x^4-8 x^5+\left (-175+70 x-7 x^2\right ) \log (x)}{(-5+x)^2 x^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {663}{(-5+x)^2}+\frac {175}{(-5+x)^2 x^2}-\frac {45}{(-5+x)^2 x}+\frac {61 x}{(-5+x)^2}+\frac {54 x^2}{(-5+x)^2}-\frac {8 x^3}{(-5+x)^2}-\frac {7 \log (x)}{x^2}\right ) \, dx\\ &=-\frac {663}{2 (5-x)}-\frac {7}{2} \int \frac {\log (x)}{x^2} \, dx-4 \int \frac {x^3}{(-5+x)^2} \, dx-\frac {45}{2} \int \frac {1}{(-5+x)^2 x} \, dx+27 \int \frac {x^2}{(-5+x)^2} \, dx+\frac {61}{2} \int \frac {x}{(-5+x)^2} \, dx+\frac {175}{2} \int \frac {1}{(-5+x)^2 x^2} \, dx\\ &=-\frac {663}{2 (5-x)}+\frac {7}{2 x}+\frac {7 \log (x)}{2 x}-4 \int \left (10+\frac {125}{(-5+x)^2}+\frac {75}{-5+x}+x\right ) \, dx-\frac {45}{2} \int \left (\frac {1}{5 (-5+x)^2}-\frac {1}{25 (-5+x)}+\frac {1}{25 x}\right ) \, dx+27 \int \left (1+\frac {25}{(-5+x)^2}+\frac {10}{-5+x}\right ) \, dx+\frac {61}{2} \int \left (\frac {5}{(-5+x)^2}+\frac {1}{-5+x}\right ) \, dx+\frac {175}{2} \int \left (\frac {1}{25 (-5+x)^2}-\frac {2}{125 (-5+x)}+\frac {1}{25 x^2}+\frac {2}{125 x}\right ) \, dx\\ &=-\frac {5}{5-x}-13 x-2 x^2+\frac {\log (x)}{2}+\frac {7 \log (x)}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 31, normalized size = 0.97 \begin {gather*} \frac {1}{2} \left (-\frac {10}{5-x}-26 x-4 x^2+\log (x)+\frac {7 \log (x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 42, normalized size = 1.31 \begin {gather*} -\frac {4 \, x^{4} + 6 \, x^{3} - 130 \, x^{2} - {\left (x^{2} + 2 \, x - 35\right )} \log \relax (x) - 10 \, x}{2 \, {\left (x^{2} - 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 27, normalized size = 0.84 \begin {gather*} -2 \, x^{2} - 13 \, x + \frac {7 \, \log \relax (x)}{2 \, x} + \frac {5}{x - 5} + \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 0.88
method | result | size |
default | \(\frac {7 \ln \relax (x )}{2 x}-2 x^{2}-13 x +\frac {\ln \relax (x )}{2}+\frac {5}{x -5}\) | \(28\) |
norman | \(\frac {330 x +x \ln \relax (x )+\frac {x^{2} \ln \relax (x )}{2}-3 x^{3}-2 x^{4}-\frac {35 \ln \relax (x )}{2}}{\left (x -5\right ) x}\) | \(39\) |
risch | \(\frac {7 \ln \relax (x )}{2 x}+\frac {-4 x^{3}+x \ln \relax (x )-6 x^{2}-5 \ln \relax (x )+130 x +10}{2 x -10}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 45, normalized size = 1.41 \begin {gather*} -2 \, x^{2} - 13 \, x - \frac {7 \, {\left (2 \, x - 5\right )}}{2 \, {\left (x^{2} - 5 \, x\right )}} + \frac {7 \, {\left (\log \relax (x) + 1\right )}}{2 \, x} + \frac {17}{2 \, {\left (x - 5\right )}} + \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 37, normalized size = 1.16 \begin {gather*} \frac {\ln \relax (x)}{2}-13\,x-2\,x^2-\frac {\frac {35\,\ln \relax (x)}{2}-x\,\left (\frac {7\,\ln \relax (x)}{2}+5\right )}{x\,\left (x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 26, normalized size = 0.81 \begin {gather*} - 2 x^{2} - 13 x + \frac {\log {\relax (x )}}{2} + \frac {5}{x - 5} + \frac {7 \log {\relax (x )}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________