Optimal. Leaf size=20 \[ x+\frac {x-\log \left (\frac {12}{7-x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 9, number of rules used = 7, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {1593, 6742, 893, 2395, 36, 31, 29} \begin {gather*} x-\frac {\log \left (\frac {12}{7-x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 893
Rule 1593
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x-7 x^2+x^3+(-7+x) \log \left (-\frac {12}{-7+x}\right )}{(-7+x) x^2} \, dx\\ &=\int \left (\frac {1-7 x+x^2}{(-7+x) x}+\frac {\log \left (-\frac {12}{-7+x}\right )}{x^2}\right ) \, dx\\ &=\int \frac {1-7 x+x^2}{(-7+x) x} \, dx+\int \frac {\log \left (-\frac {12}{-7+x}\right )}{x^2} \, dx\\ &=-\frac {\log \left (\frac {12}{7-x}\right )}{x}+\int \left (1+\frac {1}{7 (-7+x)}-\frac {1}{7 x}\right ) \, dx-\int \frac {1}{(-7+x) x} \, dx\\ &=x-\frac {\log \left (\frac {12}{7-x}\right )}{x}+\frac {1}{7} \log (7-x)-\frac {\log (x)}{7}-\frac {1}{7} \int \frac {1}{-7+x} \, dx+\frac {1}{7} \int \frac {1}{x} \, dx\\ &=x-\frac {\log \left (\frac {12}{7-x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 0.75 \begin {gather*} x-\frac {\log \left (-\frac {12}{-7+x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 18, normalized size = 0.90 \begin {gather*} \frac {x^{2} - \log \left (-\frac {12}{x - 7}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 34, normalized size = 1.70 \begin {gather*} x + \frac {\log \left (-\frac {12}{x - 7}\right )}{7 \, {\left (\frac {7}{x - 7} + 1\right )}} - \frac {1}{7} \, \log \left (-\frac {12}{x - 7}\right ) - 7 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.56, size = 16, normalized size = 0.80
method | result | size |
risch | \(-\frac {\ln \left (-\frac {12}{x -7}\right )}{x}+x\) | \(16\) |
norman | \(\frac {x^{2}-\ln \left (-\frac {12}{x -7}\right )}{x}\) | \(19\) |
derivativedivides | \(\frac {12 \ln \left (-\frac {12}{x -7}\right )}{\left (x -7\right ) \left (-12-\frac {84}{x -7}\right )}+x -7\) | \(30\) |
default | \(\frac {12 \ln \left (-\frac {12}{x -7}\right )}{\left (x -7\right ) \left (-12-\frac {84}{x -7}\right )}+x -7\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 22, normalized size = 1.10 \begin {gather*} \frac {x^{2} - \log \relax (3) - 2 \, \log \relax (2) + \log \left (-x + 7\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 15, normalized size = 0.75 \begin {gather*} x-\frac {\ln \left (-\frac {12}{x-7}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.50 \begin {gather*} x - \frac {\log {\left (- \frac {12}{x - 7} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________