Optimal. Leaf size=27 \[ \log \left (-\frac {2}{4+x+\frac {2-e^{-1+x}-e^x}{\log (x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-e^{-1+x}-e^x+\left (e^{-1+x} x+e^x x\right ) \log (x)-x \log ^2(x)}{\left (2 x-e^{-1+x} x-e^x x\right ) \log (x)+\left (4 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e \left (2-e^{-1+x} (1+e)+\left (e^{-1+x} x+e^x x\right ) \log (x)-x \log ^2(x)\right )}{x \log (x) \left (2 e-e^x (1+e)+4 e \log (x)+e x \log (x)\right )} \, dx\\ &=e \int \frac {2-e^{-1+x} (1+e)+\left (e^{-1+x} x+e^x x\right ) \log (x)-x \log ^2(x)}{x \log (x) \left (2 e-e^x (1+e)+4 e \log (x)+e x \log (x)\right )} \, dx\\ &=e \int \left (\frac {1-x \log (x)}{e x \log (x)}+\frac {-4+x+3 x \log (x)+x^2 \log (x)}{x \left (2 e-e^x (1+e)+4 e \log (x)+e x \log (x)\right )}\right ) \, dx\\ &=e \int \frac {-4+x+3 x \log (x)+x^2 \log (x)}{x \left (2 e-e^x (1+e)+4 e \log (x)+e x \log (x)\right )} \, dx+\int \frac {1-x \log (x)}{x \log (x)} \, dx\\ &=e \int \left (\frac {4}{x \left (-2 e+e^x (1+e)-4 e \log (x)-e x \log (x)\right )}+\frac {1}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)}+\frac {3 \log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)}+\frac {x \log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)}\right ) \, dx+\int \left (-1+\frac {1}{x \log (x)}\right ) \, dx\\ &=-x+e \int \frac {1}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+e \int \frac {x \log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(3 e) \int \frac {\log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(4 e) \int \frac {1}{x \left (-2 e+e^x (1+e)-4 e \log (x)-e x \log (x)\right )} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=-x+e \int \frac {1}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+e \int \frac {x \log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(3 e) \int \frac {\log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(4 e) \int \frac {1}{x \left (-2 e+e^x (1+e)-4 e \log (x)-e x \log (x)\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-x+\log (\log (x))+e \int \frac {1}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+e \int \frac {x \log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(3 e) \int \frac {\log (x)}{2 e-e^x (1+e)+4 e \log (x)+e x \log (x)} \, dx+(4 e) \int \frac {1}{x \left (-2 e+e^x (1+e)-4 e \log (x)-e x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.15, size = 30, normalized size = 1.11 \begin {gather*} \log (\log (x))-\log \left (-2 e+e^x+e^{1+x}-4 e \log (x)-e x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 40, normalized size = 1.48 \begin {gather*} -\log \left (x + 4\right ) - \log \left (\frac {{\left (x + 4\right )} e \log \relax (x) - {\left (e + 1\right )} e^{x} + 2 \, e}{x + 4}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 34, normalized size = 1.26 \begin {gather*} -\log \left (x e \log \relax (x) + 4 \, e \log \relax (x) + 2 \, e - e^{\left (x + 1\right )} - e^{x}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 32, normalized size = 1.19
method | result | size |
risch | \(-\ln \left (4+x \right )+\ln \left (\ln \relax (x )\right )-\ln \left (\ln \relax (x )-\frac {{\mathrm e}^{x -1}+{\mathrm e}^{x}-2}{4+x}\right )\) | \(32\) |
norman | \(-\ln \left (x \,{\mathrm e} \ln \relax (x )-{\mathrm e} \,{\mathrm e}^{x}+4 \,{\mathrm e} \ln \relax (x )+2 \,{\mathrm e}-{\mathrm e}^{x}\right )+\ln \left (\ln \relax (x )\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 39, normalized size = 1.44 \begin {gather*} -\log \left (\frac {{\left (e + 1\right )} e^{x} - {\left (x e + 4 \, e\right )} \log \relax (x) - 2 \, e}{e + 1}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int -\frac {x\,{\ln \relax (x)}^2+\left (-x\,{\mathrm {e}}^{x-1}-x\,{\mathrm {e}}^x\right )\,\ln \relax (x)+{\mathrm {e}}^{x-1}+{\mathrm {e}}^x-2}{\ln \relax (x)\,\left (x\,{\mathrm {e}}^{x-1}-2\,x+x\,{\mathrm {e}}^x\right )-{\ln \relax (x)}^2\,\left (x^2+4\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 37, normalized size = 1.37 \begin {gather*} - \log {\left (\frac {- e x \log {\relax (x )} - 4 e \log {\relax (x )} - 2 e}{1 + e} + e^{x} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________