Optimal. Leaf size=26 \[ \frac {x \left (5-4 x \left (-e^{\frac {11}{3}+e^4+x}+x\right )\right )}{3+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.43, antiderivative size = 73, normalized size of antiderivative = 2.81, number of steps used = 13, number of rules used = 8, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {27, 6742, 2199, 2194, 2176, 2177, 2178, 1850} \begin {gather*} -4 x^2+4 e^{x+\frac {1}{3} \left (11+3 e^4\right )} x+12 x-12 e^{x+\frac {1}{3} \left (11+3 e^4\right )}+\frac {36 e^{x+\frac {1}{3} \left (11+3 e^4\right )}}{x+3}+\frac {93}{x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15-36 x^2-8 x^3+e^{\frac {1}{3} \left (11+3 e^4+3 x\right )} \left (24 x+16 x^2+4 x^3\right )}{(3+x)^2} \, dx\\ &=\int \left (\frac {4 e^{\frac {11}{3}+e^4+x} x \left (6+4 x+x^2\right )}{(3+x)^2}+\frac {15-36 x^2-8 x^3}{(3+x)^2}\right ) \, dx\\ &=4 \int \frac {e^{\frac {11}{3}+e^4+x} x \left (6+4 x+x^2\right )}{(3+x)^2} \, dx+\int \frac {15-36 x^2-8 x^3}{(3+x)^2} \, dx\\ &=4 \int \left (-2 e^{\frac {1}{3} \left (11+3 e^4\right )+x}+e^{\frac {1}{3} \left (11+3 e^4\right )+x} x-\frac {9 e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{(3+x)^2}+\frac {9 e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{3+x}\right ) \, dx+\int \left (12-8 x-\frac {93}{(3+x)^2}\right ) \, dx\\ &=12 x-4 x^2+\frac {93}{3+x}+4 \int e^{\frac {1}{3} \left (11+3 e^4\right )+x} x \, dx-8 \int e^{\frac {1}{3} \left (11+3 e^4\right )+x} \, dx-36 \int \frac {e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{(3+x)^2} \, dx+36 \int \frac {e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{3+x} \, dx\\ &=-8 e^{\frac {1}{3} \left (11+3 e^4\right )+x}+12 x+4 e^{\frac {1}{3} \left (11+3 e^4\right )+x} x-4 x^2+\frac {93}{3+x}+\frac {36 e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{3+x}+36 e^{\frac {2}{3}+e^4} \text {Ei}(3+x)-4 \int e^{\frac {1}{3} \left (11+3 e^4\right )+x} \, dx-36 \int \frac {e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{3+x} \, dx\\ &=-12 e^{\frac {1}{3} \left (11+3 e^4\right )+x}+12 x+4 e^{\frac {1}{3} \left (11+3 e^4\right )+x} x-4 x^2+\frac {93}{3+x}+\frac {36 e^{\frac {1}{3} \left (11+3 e^4\right )+x}}{3+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 31, normalized size = 1.19 \begin {gather*} \frac {93+36 x+4 e^{\frac {11}{3}+e^4+x} x^2-4 x^3}{3+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \, x^{3} - 4 \, x^{2} e^{\left (x + e^{4} + \frac {11}{3}\right )} - 36 \, x - 93}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \, x^{3} - 4 \, x^{2} e^{\left (x + e^{4} + \frac {11}{3}\right )} - 36 \, x - 93}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.22, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {-4 x^{3}+4 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} x^{2}-15}{3+x}\) | \(25\) |
risch | \(-4 x^{2}+12 x +\frac {93}{3+x}+\frac {4 x^{2} {\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{3+x}\) | \(33\) |
derivativedivides | \(-\frac {3071}{9 \left (-3 x -9\right )}+\frac {-156 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2}+312 \,{\mathrm e}^{8}+416 \,{\mathrm e}^{4}+\frac {416}{3}}{-3 x -9}+\frac {\left (36 \,{\mathrm e}^{4}+24\right ) \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2}+12 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{3}-72 \,{\mathrm e}^{12}-144 \,{\mathrm e}^{8}-96 \,{\mathrm e}^{4}-\frac {64}{3}}{-3 x -9}-\frac {204 \,{\mathrm e}^{8}}{-3 x -9}-\frac {48 \,{\mathrm e}^{12}}{-3 x -9}-\frac {1892 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{9 \left (-3 x -9\right )}+\frac {1892 \,{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{27}-\frac {208 \,{\mathrm e}^{4}}{-3 x -9}+\frac {-72 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2} {\mathrm e}^{4}+144 \,{\mathrm e}^{12}+192 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}}{-3 x -9}+\frac {68 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-3 x -9}-612 \left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )-28 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}-\frac {28 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (9 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}+4\right )}{3 \left (-3 x -9\right )}+28 \left ({\mathrm e}^{8}+\frac {10 \,{\mathrm e}^{4}}{3}+\frac {16}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )+\frac {4 \left (9 \,{\mathrm e}^{4}+3 x +12\right ) {\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{3}+\frac {4 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (27 \,{\mathrm e}^{12}+54 \,{\mathrm e}^{8}+36 \,{\mathrm e}^{4}+8\right )}{9 \left (-3 x -9\right )}-\frac {4 \left (3 \,{\mathrm e}^{12}+15 \,{\mathrm e}^{8}+16 \,{\mathrm e}^{4}+\frac {44}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{3}-612 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )-252 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )-36 \,{\mathrm e}^{12} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )+504 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-27 x -81}-\left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )\right )+108 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-27 x -81}-\left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )\right )-108 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{9}+\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (9 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}+4\right )}{-81 x -243}-\frac {\left ({\mathrm e}^{8}+\frac {10 \,{\mathrm e}^{4}}{3}+\frac {16}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )\) | \(629\) |
default | \(-\frac {3071}{9 \left (-3 x -9\right )}+\frac {-156 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2}+312 \,{\mathrm e}^{8}+416 \,{\mathrm e}^{4}+\frac {416}{3}}{-3 x -9}+\frac {\left (36 \,{\mathrm e}^{4}+24\right ) \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2}+12 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{3}-72 \,{\mathrm e}^{12}-144 \,{\mathrm e}^{8}-96 \,{\mathrm e}^{4}-\frac {64}{3}}{-3 x -9}-\frac {204 \,{\mathrm e}^{8}}{-3 x -9}-\frac {48 \,{\mathrm e}^{12}}{-3 x -9}-\frac {1892 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{9 \left (-3 x -9\right )}+\frac {1892 \,{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{27}-\frac {208 \,{\mathrm e}^{4}}{-3 x -9}+\frac {-72 \left ({\mathrm e}^{4}+x +\frac {11}{3}\right )^{2} {\mathrm e}^{4}+144 \,{\mathrm e}^{12}+192 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}}{-3 x -9}+\frac {68 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-3 x -9}-612 \left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )-28 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}-\frac {28 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (9 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}+4\right )}{3 \left (-3 x -9\right )}+28 \left ({\mathrm e}^{8}+\frac {10 \,{\mathrm e}^{4}}{3}+\frac {16}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )+\frac {4 \left (9 \,{\mathrm e}^{4}+3 x +12\right ) {\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{3}+\frac {4 \,{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (27 \,{\mathrm e}^{12}+54 \,{\mathrm e}^{8}+36 \,{\mathrm e}^{4}+8\right )}{9 \left (-3 x -9\right )}-\frac {4 \left (3 \,{\mathrm e}^{12}+15 \,{\mathrm e}^{8}+16 \,{\mathrm e}^{4}+\frac {44}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{3}-612 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )-252 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )-36 \,{\mathrm e}^{12} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{-9 x -27}-\frac {{\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )+504 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-27 x -81}-\left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )\right )+108 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (3 \,{\mathrm e}^{4}+2\right )}{-27 x -81}-\left (\frac {{\mathrm e}^{4}}{9}+\frac {5}{27}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )\right )-108 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}}}{9}+\frac {{\mathrm e}^{{\mathrm e}^{4}+x +\frac {11}{3}} \left (9 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}+4\right )}{-81 x -243}-\frac {\left ({\mathrm e}^{8}+\frac {10 \,{\mathrm e}^{4}}{3}+\frac {16}{9}\right ) {\mathrm e}^{{\mathrm e}^{4}+\frac {2}{3}} \expIntegralEi \left (1, -3-x \right )}{9}\right )\) | \(629\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 32, normalized size = 1.23 \begin {gather*} -4 \, x^{2} + \frac {4 \, x^{2} e^{\left (x + e^{4} + \frac {11}{3}\right )}}{x + 3} + 12 \, x + \frac {93}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.43, size = 23, normalized size = 0.88 \begin {gather*} \frac {x\,\left (4\,x\,{\mathrm {e}}^{x+{\mathrm {e}}^4+\frac {11}{3}}-4\,x^2+5\right )}{x+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 31, normalized size = 1.19 \begin {gather*} - 4 x^{2} + \frac {4 x^{2} e^{x + \frac {11}{3} + e^{4}}}{x + 3} + 12 x + \frac {93}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________