Optimal. Leaf size=26 \[ \log \left (\frac {-4+x+\frac {x (1+2 x)}{(-9+x)^2}}{4 \log \left (\frac {1}{x^2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 32, normalized size of antiderivative = 1.23, number of steps used = 7, number of rules used = 5, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6688, 2074, 1587, 2302, 29} \begin {gather*} -\log \left (\log \left (\frac {1}{x^2}\right )\right )+\log \left (-x^3+20 x^2-154 x+324\right )-2 \log (9-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 1587
Rule 2074
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-738+206 x-27 x^2+x^3}{2916-1710 x+334 x^2-29 x^3+x^4}+\frac {2}{x \log \left (\frac {1}{x^2}\right )}\right ) \, dx\\ &=2 \int \frac {1}{x \log \left (\frac {1}{x^2}\right )} \, dx+\int \frac {-738+206 x-27 x^2+x^3}{2916-1710 x+334 x^2-29 x^3+x^4} \, dx\\ &=\int \left (-\frac {2}{-9+x}+\frac {154-40 x+3 x^2}{-324+154 x-20 x^2+x^3}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {1}{x^2}\right )\right )\\ &=-2 \log (9-x)-\log \left (\log \left (\frac {1}{x^2}\right )\right )+\int \frac {154-40 x+3 x^2}{-324+154 x-20 x^2+x^3} \, dx\\ &=-2 \log (9-x)+\log \left (324-154 x+20 x^2-x^3\right )-\log \left (\log \left (\frac {1}{x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.23 \begin {gather*} -2 \log (9-x)+\log \left (324-154 x+20 x^2-x^3\right )-\log \left (\log \left (\frac {1}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.08 \begin {gather*} \log \left (x^{3} - 20 \, x^{2} + 154 \, x - 324\right ) - 2 \, \log \left (x - 9\right ) - \log \left (\log \left (\frac {1}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 28, normalized size = 1.08 \begin {gather*} \log \left (x^{3} - 20 \, x^{2} + 154 \, x - 324\right ) - 2 \, \log \left (x - 9\right ) - \log \left (\log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 29, normalized size = 1.12
method | result | size |
norman | \(-\ln \left (\ln \left (\frac {1}{x^{2}}\right )\right )-2 \ln \left (x -9\right )+\ln \left (x^{3}-20 x^{2}+154 x -324\right )\) | \(29\) |
risch | \(-\ln \left (\ln \left (\frac {1}{x^{2}}\right )\right )-2 \ln \left (x -9\right )+\ln \left (x^{3}-20 x^{2}+154 x -324\right )\) | \(29\) |
derivativedivides | \(-\ln \left (\ln \left (\frac {1}{x^{2}}\right )\right )-\ln \left (\frac {1}{x}\right )-2 \ln \left (\frac {9}{x}-1\right )+\ln \left (\frac {324}{x^{3}}-\frac {154}{x^{2}}+\frac {20}{x}-1\right )\) | \(43\) |
default | \(-\ln \left (\ln \left (\frac {1}{x^{2}}\right )\right )-\ln \left (\frac {1}{x}\right )-2 \ln \left (\frac {9}{x}-1\right )+\ln \left (\frac {324}{x^{3}}-\frac {154}{x^{2}}+\frac {20}{x}-1\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 26, normalized size = 1.00 \begin {gather*} \log \left (x^{3} - 20 \, x^{2} + 154 \, x - 324\right ) - 2 \, \log \left (x - 9\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.68, size = 28, normalized size = 1.08 \begin {gather*} \ln \left (x^3-20\,x^2+154\,x-324\right )-\ln \left (\ln \left (\frac {1}{x^2}\right )\right )-2\,\ln \left (x-9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.12 \begin {gather*} - 2 \log {\left (x - 9 \right )} + \log {\left (x^{3} - 20 x^{2} + 154 x - 324 \right )} - \log {\left (\log {\left (\frac {1}{x^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________