Optimal. Leaf size=32 \[ \frac {x^2}{-x+\frac {1}{4} e^5 x^2 \left (2 x+\log \left (1-\frac {x}{2}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32-16 x+e^5 \left (12 x^2-8 x^3\right )}{-32+16 x+e^5 \left (32 x^2-16 x^3\right )+e^{10} \left (-8 x^4+4 x^5\right )+\left (e^5 \left (16 x-8 x^2\right )+e^{10} \left (-8 x^3+4 x^4\right )\right ) \log \left (\frac {2-x}{2}\right )+e^{10} \left (-2 x^2+x^3\right ) \log ^2\left (\frac {2-x}{2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-8+4 x-3 e^5 x^2+2 e^5 x^3\right )}{(2-x) \left (4-2 e^5 x^2-e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx\\ &=4 \int \frac {-8+4 x-3 e^5 x^2+2 e^5 x^3}{(2-x) \left (4-2 e^5 x^2-e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx\\ &=4 \int \left (-\frac {2 \left (2+e^5\right )}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2}-\frac {4 e^5}{(-2+x) \left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2}-\frac {e^5 x}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2}-\frac {2 e^5 x^2}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2}\right ) \, dx\\ &=-\left (\left (4 e^5\right ) \int \frac {x}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx\right )-\left (8 e^5\right ) \int \frac {x^2}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx-\left (16 e^5\right ) \int \frac {1}{(-2+x) \left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx-\left (8 \left (2+e^5\right )\right ) \int \frac {1}{\left (-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.08, size = 28, normalized size = 0.88 \begin {gather*} \frac {4 x}{-4+2 e^5 x^2+e^5 x \log \left (1-\frac {x}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 \, x}{2 \, x^{2} e^{5} + x e^{5} \log \left (-\frac {1}{2} \, x + 1\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 \, x}{2 \, x^{2} e^{5} + x e^{5} \log \left (-\frac {1}{2} \, x + 1\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 25, normalized size = 0.78
method | result | size |
norman | \(\frac {4 x}{{\mathrm e}^{5} \ln \left (1-\frac {x}{2}\right ) x +2 x^{2} {\mathrm e}^{5}-4}\) | \(25\) |
risch | \(\frac {4 x}{{\mathrm e}^{5} \ln \left (1-\frac {x}{2}\right ) x +2 x^{2} {\mathrm e}^{5}-4}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 31, normalized size = 0.97 \begin {gather*} \frac {4 \, x}{2 \, x^{2} e^{5} - x e^{5} \log \relax (2) + x e^{5} \log \left (-x + 2\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^5\,\left (12\,x^2-8\,x^3\right )-16\,x+32}{-{\mathrm {e}}^{10}\,\left (2\,x^2-x^3\right )\,{\ln \left (1-\frac {x}{2}\right )}^2+\left ({\mathrm {e}}^5\,\left (16\,x-8\,x^2\right )-{\mathrm {e}}^{10}\,\left (8\,x^3-4\,x^4\right )\right )\,\ln \left (1-\frac {x}{2}\right )+16\,x-{\mathrm {e}}^{10}\,\left (8\,x^4-4\,x^5\right )+{\mathrm {e}}^5\,\left (32\,x^2-16\,x^3\right )-32} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 x}{2 x^{2} e^{5} + x e^{5} \log {\left (1 - \frac {x}{2} \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________