Optimal. Leaf size=32 \[ -x+\log \left (4+x-x^2-\frac {3}{e^{-e^5} x-x^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.32, antiderivative size = 68, normalized size of antiderivative = 2.12, number of steps used = 3, number of rules used = 2, integrand size = 143, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2074, 1587} \begin {gather*} \log \left (-e^{e^5} x^4+\left (1+e^{e^5}\right ) x^3-\left (1-4 e^{e^5}\right ) x^2-4 x+3 e^{e^5}\right )-x-\log (x)-\log \left (1-e^{e^5} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-\frac {1}{x}-\frac {e^{e^5}}{-1+e^{e^5} x}+\frac {-4-2 \left (1-4 e^{e^5}\right ) x+3 \left (1+e^{e^5}\right ) x^2-4 e^{e^5} x^3}{3 e^{e^5}-4 x-\left (1-4 e^{e^5}\right ) x^2+\left (1+e^{e^5}\right ) x^3-e^{e^5} x^4}\right ) \, dx\\ &=-x-\log (x)-\log \left (1-e^{e^5} x\right )+\int \frac {-4-2 \left (1-4 e^{e^5}\right ) x+3 \left (1+e^{e^5}\right ) x^2-4 e^{e^5} x^3}{3 e^{e^5}-4 x-\left (1-4 e^{e^5}\right ) x^2+\left (1+e^{e^5}\right ) x^3-e^{e^5} x^4} \, dx\\ &=-x-\log (x)-\log \left (1-e^{e^5} x\right )+\log \left (3 e^{e^5}-4 x-\left (1-4 e^{e^5}\right ) x^2+\left (1+e^{e^5}\right ) x^3-e^{e^5} x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.10, size = 70, normalized size = 2.19 \begin {gather*} -x-\log (x)-\log \left (1-e^{e^5} x\right )+\log \left (-3 e^{e^5}+4 x+x^2-4 e^{e^5} x^2-x^3-e^{e^5} x^3+e^{e^5} x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 50, normalized size = 1.56 \begin {gather*} -x + \log \left (-x^{3} + x^{2} + {\left (x^{4} - x^{3} - 4 \, x^{2} - 3\right )} e^{\left (e^{5}\right )} + 4 \, x\right ) - \log \left (x^{2} e^{\left (e^{5}\right )} - x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 56, normalized size = 1.75
method | result | size |
risch | \(-x -\ln \left (-x^{2} {\mathrm e}^{{\mathrm e}^{5}}+x \right )+\ln \left (-{\mathrm e}^{{\mathrm e}^{5}} x^{4}+\left ({\mathrm e}^{{\mathrm e}^{5}}+1\right ) x^{3}+\left (-1+4 \,{\mathrm e}^{{\mathrm e}^{5}}\right ) x^{2}-4 x +3 \,{\mathrm e}^{{\mathrm e}^{5}}\right )\) | \(56\) |
norman | \(-x -\ln \relax (x )-\ln \left (x \,{\mathrm e}^{{\mathrm e}^{5}}-1\right )+\ln \left ({\mathrm e}^{{\mathrm e}^{5}} x^{4}-{\mathrm e}^{{\mathrm e}^{5}} x^{3}-4 x^{2} {\mathrm e}^{{\mathrm e}^{5}}-x^{3}+x^{2}-3 \,{\mathrm e}^{{\mathrm e}^{5}}+4 x \right )\) | \(60\) |
default | \(-x -\ln \relax (x )-\left (\munderset {\textit {\_R} =\RootOf \left ({\mathrm e}^{2 \,{\mathrm e}^{5}} \textit {\_Z}^{5}-\left (2 \,{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{2 \,{\mathrm e}^{5}}\right ) \textit {\_Z}^{4}-\left (-2 \,{\mathrm e}^{{\mathrm e}^{5}}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}-1\right ) \textit {\_Z}^{3}-\left (-8 \,{\mathrm e}^{{\mathrm e}^{5}}+1\right ) \textit {\_Z}^{2}-\left (3 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}+4\right ) \textit {\_Z} +3 \,{\mathrm e}^{{\mathrm e}^{5}}\right )}{\sum }\frac {\left (-4+3 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} \textit {\_R}^{4}+2 \left (-3 \,{\mathrm e}^{{\mathrm e}^{5}}-{\mathrm e}^{2 \,{\mathrm e}^{5}}\right ) \textit {\_R}^{3}+\left (4 \,{\mathrm e}^{{\mathrm e}^{5}}-4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}+3\right ) \textit {\_R}^{2}+2 \left (-1+4 \,{\mathrm e}^{{\mathrm e}^{5}}\right ) \textit {\_R} +3 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}\right ) \ln \left (x -\textit {\_R} \right )}{-5 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} \textit {\_R}^{4}+8 \,{\mathrm e}^{{\mathrm e}^{5}} \textit {\_R}^{3}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} \textit {\_R}^{3}-6 \textit {\_R}^{2} {\mathrm e}^{{\mathrm e}^{5}}+12 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} \textit {\_R}^{2}-16 \textit {\_R} \,{\mathrm e}^{{\mathrm e}^{5}}-3 \textit {\_R}^{2}+3 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}+2 \textit {\_R} +4}\right )\) | \(232\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 57, normalized size = 1.78 \begin {gather*} -x + \log \left (x^{4} e^{\left (e^{5}\right )} - x^{3} {\left (e^{\left (e^{5}\right )} + 1\right )} - x^{2} {\left (4 \, e^{\left (e^{5}\right )} - 1\right )} + 4 \, x - 3 \, e^{\left (e^{5}\right )}\right ) - \log \left (x e^{\left (e^{5}\right )} - 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.83, size = 62, normalized size = 1.94 \begin {gather*} \ln \left (4\,x\,{\mathrm {e}}^{-{\mathrm {e}}^5}+x^2\,{\mathrm {e}}^{-{\mathrm {e}}^5}-x^3\,{\mathrm {e}}^{-{\mathrm {e}}^5}-4\,x^2-x^3+x^4-3\right )-\ln \left (x^2-x\,{\mathrm {e}}^{-{\mathrm {e}}^5}\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 5.03, size = 61, normalized size = 1.91 \begin {gather*} - x - \log {\left (x^{2} - \frac {x}{e^{e^{5}}} \right )} + \log {\left (x^{4} + \frac {x^{3} \left (- e^{e^{5}} - 1\right )}{e^{e^{5}}} + \frac {x^{2} \left (1 - 4 e^{e^{5}}\right )}{e^{e^{5}}} + \frac {4 x}{e^{e^{5}}} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________