Optimal. Leaf size=23 \[ \frac {1}{4} e^{-10-6 e^{\frac {3 x}{e^3}}} (1-x) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {12, 2288} \begin {gather*} \frac {1}{4} e^{-6 e^{\frac {3 x}{e^3}}-10} (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{-13-6 e^{\frac {3 x}{e^3}}} \left (-e^3+e^{\frac {3 x}{e^3}} (-18+18 x)\right ) \, dx\\ &=\frac {1}{4} e^{-10-6 e^{\frac {3 x}{e^3}}} (1-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.91 \begin {gather*} -\frac {1}{4} e^{-10-6 e^{\frac {3 x}{e^3}}} (-1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 16, normalized size = 0.70 \begin {gather*} -\frac {1}{4} \, {\left (x - 1\right )} e^{\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{4} \, {\left (18 \, {\left (x - 1\right )} e^{\left (3 \, x e^{\left (-3\right )}\right )} - e^{3}\right )} e^{\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )} - 13\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 17, normalized size = 0.74
method | result | size |
risch | \(-\frac {\left (x -1\right ) {\mathrm e}^{-6 \,{\mathrm e}^{3 x \,{\mathrm e}^{-3}}-10}}{4}\) | \(17\) |
norman | \(\left (\frac {1}{4}-\frac {x}{4}\right ) {\mathrm e}^{-6 \,{\mathrm e}^{3 x \,{\mathrm e}^{-3}}-10}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{12} \, {\rm Ei}\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )}\right ) e^{\left (-7\right )} - \frac {1}{4} \, x e^{\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )} - 10\right )} + \frac {1}{4} \, e^{\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )} - 10\right )} + \frac {1}{4} \, \int e^{\left (-6 \, e^{\left (3 \, x e^{\left (-3\right )}\right )} - 10\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 16, normalized size = 0.70 \begin {gather*} -\frac {{\mathrm {e}}^{-10}\,{\mathrm {e}}^{-6\,{\mathrm {e}}^{3\,x\,{\mathrm {e}}^{-3}}}\,\left (x-1\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 19, normalized size = 0.83 \begin {gather*} \frac {\left (1 - x\right ) e^{- 6 e^{\frac {3 x}{e^{3}}} - 10}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________