Optimal. Leaf size=23 \[ e^{x+\frac {5 \left (-3-\frac {4}{x}+x\right ) \log \left (14+e^x\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x^3+\left (-20-15 x+5 x^2\right ) \log \left (14+e^x\right )}{x^2}} \left (14 x^3+e^x \left (-20 x-15 x^2+6 x^3\right )+\left (560+210 x+e^x (40+15 x)\right ) \log \left (14+e^x\right )\right )}{14 x^3+e^x x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (14 x^3+e^x x \left (-20-15 x+6 x^2\right )+5 \left (14+e^x\right ) (8+3 x) \log \left (14+e^x\right )\right )}{x^3} \, dx\\ &=\int \left (\frac {14 e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (x^3+40 \log \left (14+e^x\right )+15 x \log \left (14+e^x\right )\right )}{x^3}+\frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (-20 x-15 x^2+6 x^3+40 \log \left (14+e^x\right )+15 x \log \left (14+e^x\right )\right )}{x^3}\right ) \, dx\\ &=14 \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (x^3+40 \log \left (14+e^x\right )+15 x \log \left (14+e^x\right )\right )}{x^3} \, dx+\int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (-20 x-15 x^2+6 x^3+40 \log \left (14+e^x\right )+15 x \log \left (14+e^x\right )\right )}{x^3} \, dx\\ &=14 \int \left (e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}+\frac {5 e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} (8+3 x) \log \left (14+e^x\right )}{x^3}\right ) \, dx+\int \left (\frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (-20-15 x+6 x^2\right )}{x^2}+\frac {5 e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} (8+3 x) \log \left (14+e^x\right )}{x^3}\right ) \, dx\\ &=5 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} (8+3 x) \log \left (14+e^x\right )}{x^3} \, dx+14 \int e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx+70 \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} (8+3 x) \log \left (14+e^x\right )}{x^3} \, dx+\int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \left (-20-15 x+6 x^2\right )}{x^2} \, dx\\ &=-\left (5 \int \frac {e^x \left (8 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+3 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx\right )}{14+e^x} \, dx\right )+14 \int e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx-70 \int \frac {e^x \left (8 \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+3 \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx\right )}{14+e^x} \, dx+\left (15 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (40 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+\left (210 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (560 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+\int \left (6 e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}-\frac {20 e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2}-\frac {15 e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x}\right ) \, dx\\ &=-\left (5 \int \left (\frac {8 e^x \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx}{14+e^x}+\frac {3 e^x \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx}{14+e^x}\right ) \, dx\right )+6 \int e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx+14 \int e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx-15 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x} \, dx-20 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx-70 \int \left (\frac {8 e^x \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx}{14+e^x}+\frac {3 e^x \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx}{14+e^x}\right ) \, dx+\left (15 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (40 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+\left (210 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (560 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx\\ &=6 \int e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx+14 \int e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}} \, dx-15 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x} \, dx-15 \int \frac {e^x \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx}{14+e^x} \, dx-20 \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx-40 \int \frac {e^x \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx}{14+e^x} \, dx-210 \int \frac {e^x \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx}{14+e^x} \, dx-560 \int \frac {e^x \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx}{14+e^x} \, dx+\left (15 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (40 \log \left (14+e^x\right )\right ) \int \frac {e^{2 x} \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx+\left (210 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^2} \, dx+\left (560 \log \left (14+e^x\right )\right ) \int \frac {e^x \left (14+e^x\right )^{4-\frac {20}{x^2}-\frac {15}{x}}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.45, size = 22, normalized size = 0.96 \begin {gather*} e^x \left (14+e^x\right )^{5-\frac {5 (4+3 x)}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 24, normalized size = 1.04 \begin {gather*} e^{\left (\frac {x^{3} + 5 \, {\left (x^{2} - 3 \, x - 4\right )} \log \left (e^{x} + 14\right )}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.58, size = 30, normalized size = 1.30 \begin {gather*} e^{\left (x - \frac {15 \, \log \left (e^{x} + 14\right )}{x} - \frac {20 \, \log \left (e^{x} + 14\right )}{x^{2}} + 5 \, \log \left (e^{x} + 14\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.30
method | result | size |
risch | \(\left ({\mathrm e}^{x}+14\right )^{5} \left ({\mathrm e}^{x}+14\right )^{-\frac {15}{x}} \left ({\mathrm e}^{x}+14\right )^{-\frac {20}{x^{2}}} {\mathrm e}^{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 56, normalized size = 2.43 \begin {gather*} {\left (e^{\left (6 \, x\right )} + 70 \, e^{\left (5 \, x\right )} + 1960 \, e^{\left (4 \, x\right )} + 27440 \, e^{\left (3 \, x\right )} + 192080 \, e^{\left (2 \, x\right )} + 537824 \, e^{x}\right )} e^{\left (-\frac {15 \, \log \left (e^{x} + 14\right )}{x} - \frac {20 \, \log \left (e^{x} + 14\right )}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.86, size = 178, normalized size = 7.74 \begin {gather*} \frac {192080\,{\mathrm {e}}^{2\,x}}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}}+\frac {27440\,{\mathrm {e}}^{3\,x}}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}}+\frac {1960\,{\mathrm {e}}^{4\,x}}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}}+\frac {70\,{\mathrm {e}}^{5\,x}}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}}+\frac {{\mathrm {e}}^{6\,x}}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}}+\frac {537824\,{\mathrm {e}}^x}{{\left ({\mathrm {e}}^x+14\right )}^{15/x}\,{\left ({\mathrm {e}}^x+14\right )}^{\frac {20}{x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________