Optimal. Leaf size=27 \[ \left (\frac {27 \left (-\frac {4}{x}+x\right )}{x}-\frac {x}{e^x+\log (\log (x))}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 5.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^6+e^x \left (-216 x^3+54 x^5\right )+\left (e^{3 x} \left (-46656+11664 x^2\right )+e^{2 x} \left (-216 x^3-216 x^4-54 x^5+54 x^6\right )+e^x \left (2 x^6-2 x^7\right )\right ) \log (x)+\left (-216 x^3+54 x^5+\left (2 x^6+e^{2 x} \left (-139968+34992 x^2\right )+e^x \left (-432 x^3-216 x^4-108 x^5+54 x^6\right )\right ) \log (x)\right ) \log (\log (x))+\left (-216 x^3-54 x^5+e^x \left (-139968+34992 x^2\right )\right ) \log (x) \log ^2(\log (x))+\left (-46656+11664 x^2\right ) \log (x) \log ^3(\log (x))}{e^{3 x} x^5 \log (x)+3 e^{2 x} x^5 \log (x) \log (\log (x))+3 e^x x^5 \log (x) \log ^2(\log (x))+x^5 \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (x^3-27 e^x \left (-4+x^2\right )-27 \left (-4+x^2\right ) \log (\log (x))\right ) \left (-x^3-\log (x) \left (e^x \left (216 e^x+(-1+x) x^3\right )+\left (432 e^x-x^3\right ) \log (\log (x))+216 \log ^2(\log (x))\right )\right )}{x^5 \log (x) \left (e^x+\log (\log (x))\right )^3} \, dx\\ &=2 \int \frac {\left (x^3-27 e^x \left (-4+x^2\right )-27 \left (-4+x^2\right ) \log (\log (x))\right ) \left (-x^3-\log (x) \left (e^x \left (216 e^x+(-1+x) x^3\right )+\left (432 e^x-x^3\right ) \log (\log (x))+216 \log ^2(\log (x))\right )\right )}{x^5 \log (x) \left (e^x+\log (\log (x))\right )^3} \, dx\\ &=2 \int \left (\frac {5832 (-2+x) (2+x)}{x^5}+\frac {27 \left (-4-4 x-x^2+x^3\right )}{x^2 \left (e^x+\log (\log (x))\right )}+\frac {x (-1+x \log (x) \log (\log (x)))}{\log (x) \left (e^x+\log (\log (x))\right )^3}-\frac {108-27 x^2-x^3 \log (x)+x^4 \log (x)-108 x \log (x) \log (\log (x))+27 x^3 \log (x) \log (\log (x))}{x^2 \log (x) \left (e^x+\log (\log (x))\right )^2}\right ) \, dx\\ &=2 \int \frac {x (-1+x \log (x) \log (\log (x)))}{\log (x) \left (e^x+\log (\log (x))\right )^3} \, dx-2 \int \frac {108-27 x^2-x^3 \log (x)+x^4 \log (x)-108 x \log (x) \log (\log (x))+27 x^3 \log (x) \log (\log (x))}{x^2 \log (x) \left (e^x+\log (\log (x))\right )^2} \, dx+54 \int \frac {-4-4 x-x^2+x^3}{x^2 \left (e^x+\log (\log (x))\right )} \, dx+11664 \int \frac {(-2+x) (2+x)}{x^5} \, dx\\ &=2 \int \left (-\frac {x}{\log (x) \left (e^x+\log (\log (x))\right )^3}+\frac {x^2 \log (\log (x))}{\left (e^x+\log (\log (x))\right )^3}\right ) \, dx-2 \int \left (-\frac {x}{\left (e^x+\log (\log (x))\right )^2}+\frac {x^2}{\left (e^x+\log (\log (x))\right )^2}-\frac {27}{\log (x) \left (e^x+\log (\log (x))\right )^2}+\frac {108}{x^2 \log (x) \left (e^x+\log (\log (x))\right )^2}-\frac {108 \log (\log (x))}{x \left (e^x+\log (\log (x))\right )^2}+\frac {27 x \log (\log (x))}{\left (e^x+\log (\log (x))\right )^2}\right ) \, dx+54 \int \left (-\frac {1}{e^x+\log (\log (x))}-\frac {4}{x^2 \left (e^x+\log (\log (x))\right )}-\frac {4}{x \left (e^x+\log (\log (x))\right )}+\frac {x}{e^x+\log (\log (x))}\right ) \, dx+11664 \int \frac {-4+x^2}{x^5} \, dx\\ &=-\left (2 \int \frac {x}{\log (x) \left (e^x+\log (\log (x))\right )^3} \, dx\right )+2 \int \frac {x^2 \log (\log (x))}{\left (e^x+\log (\log (x))\right )^3} \, dx+2 \int \frac {x}{\left (e^x+\log (\log (x))\right )^2} \, dx-2 \int \frac {x^2}{\left (e^x+\log (\log (x))\right )^2} \, dx+54 \int \frac {1}{\log (x) \left (e^x+\log (\log (x))\right )^2} \, dx-54 \int \frac {x \log (\log (x))}{\left (e^x+\log (\log (x))\right )^2} \, dx-54 \int \frac {1}{e^x+\log (\log (x))} \, dx+54 \int \frac {x}{e^x+\log (\log (x))} \, dx-216 \int \frac {1}{x^2 \log (x) \left (e^x+\log (\log (x))\right )^2} \, dx+216 \int \frac {\log (\log (x))}{x \left (e^x+\log (\log (x))\right )^2} \, dx-216 \int \frac {1}{x^2 \left (e^x+\log (\log (x))\right )} \, dx-216 \int \frac {1}{x \left (e^x+\log (\log (x))\right )} \, dx+11664 \int \left (-\frac {4}{x^5}+\frac {1}{x^3}\right ) \, dx\\ &=\frac {11664}{x^4}-\frac {5832}{x^2}-2 \int \frac {x}{\log (x) \left (e^x+\log (\log (x))\right )^3} \, dx+2 \int \frac {x^2 \log (\log (x))}{\left (e^x+\log (\log (x))\right )^3} \, dx+2 \int \frac {x}{\left (e^x+\log (\log (x))\right )^2} \, dx-2 \int \frac {x^2}{\left (e^x+\log (\log (x))\right )^2} \, dx+54 \int \frac {1}{\log (x) \left (e^x+\log (\log (x))\right )^2} \, dx-54 \int \frac {x \log (\log (x))}{\left (e^x+\log (\log (x))\right )^2} \, dx-54 \int \frac {1}{e^x+\log (\log (x))} \, dx+54 \int \frac {x}{e^x+\log (\log (x))} \, dx-216 \int \frac {1}{x^2 \log (x) \left (e^x+\log (\log (x))\right )^2} \, dx+216 \int \frac {\log (\log (x))}{x \left (e^x+\log (\log (x))\right )^2} \, dx-216 \int \frac {1}{x^2 \left (e^x+\log (\log (x))\right )} \, dx-216 \int \frac {1}{x \left (e^x+\log (\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 48, normalized size = 1.78 \begin {gather*} 2 \left (\frac {5832}{x^4}-\frac {2916}{x^2}+\frac {x^2}{2 \left (e^x+\log (\log (x))\right )^2}-\frac {27 \left (-4+x^2\right )}{x \left (e^x+\log (\log (x))\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 94, normalized size = 3.48 \begin {gather*} \frac {x^{6} - 5832 \, {\left (x^{2} - 2\right )} \log \left (\log \relax (x)\right )^{2} - 5832 \, {\left (x^{2} - 2\right )} e^{\left (2 \, x\right )} - 54 \, {\left (x^{5} - 4 \, x^{3}\right )} e^{x} - 54 \, {\left (x^{5} - 4 \, x^{3} + 216 \, {\left (x^{2} - 2\right )} e^{x}\right )} \log \left (\log \relax (x)\right )}{2 \, x^{4} e^{x} \log \left (\log \relax (x)\right ) + x^{4} \log \left (\log \relax (x)\right )^{2} + x^{4} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 114, normalized size = 4.22 \begin {gather*} \frac {x^{6} - 54 \, x^{5} e^{x} - 54 \, x^{5} \log \left (\log \relax (x)\right ) + 216 \, x^{3} e^{x} + 216 \, x^{3} \log \left (\log \relax (x)\right ) - 11664 \, x^{2} e^{x} \log \left (\log \relax (x)\right ) - 5832 \, x^{2} \log \left (\log \relax (x)\right )^{2} - 5832 \, x^{2} e^{\left (2 \, x\right )} + 23328 \, e^{x} \log \left (\log \relax (x)\right ) + 11664 \, \log \left (\log \relax (x)\right )^{2} + 11664 \, e^{\left (2 \, x\right )}}{2 \, x^{4} e^{x} \log \left (\log \relax (x)\right ) + x^{4} \log \left (\log \relax (x)\right )^{2} + x^{4} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 52, normalized size = 1.93
method | result | size |
risch | \(-\frac {5832 \left (x^{2}-2\right )}{x^{4}}+\frac {x^{3}-54 \,{\mathrm e}^{x} x^{2}-54 x^{2} \ln \left (\ln \relax (x )\right )+216 \,{\mathrm e}^{x}+216 \ln \left (\ln \relax (x )\right )}{\left (\ln \left (\ln \relax (x )\right )+{\mathrm e}^{x}\right )^{2} x}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 94, normalized size = 3.48 \begin {gather*} \frac {x^{6} - 5832 \, {\left (x^{2} - 2\right )} \log \left (\log \relax (x)\right )^{2} - 5832 \, {\left (x^{2} - 2\right )} e^{\left (2 \, x\right )} - 54 \, {\left (x^{5} - 4 \, x^{3}\right )} e^{x} - 54 \, {\left (x^{5} - 4 \, x^{3} + 216 \, {\left (x^{2} - 2\right )} e^{x}\right )} \log \left (\log \relax (x)\right )}{2 \, x^{4} e^{x} \log \left (\log \relax (x)\right ) + x^{4} \log \left (\log \relax (x)\right )^{2} + x^{4} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left ({\mathrm {e}}^{2\,x}\,\left (34992\,x^2-139968\right )-{\mathrm {e}}^x\,\left (-54\,x^6+108\,x^5+216\,x^4+432\,x^3\right )+2\,x^6\right )-216\,x^3+54\,x^5\right )-{\mathrm {e}}^x\,\left (216\,x^3-54\,x^5\right )+\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (2\,x^6-2\,x^7\right )+{\mathrm {e}}^{3\,x}\,\left (11664\,x^2-46656\right )-{\mathrm {e}}^{2\,x}\,\left (-54\,x^6+54\,x^5+216\,x^4+216\,x^3\right )\right )-2\,x^6+{\ln \left (\ln \relax (x)\right )}^3\,\ln \relax (x)\,\left (11664\,x^2-46656\right )-{\ln \left (\ln \relax (x)\right )}^2\,\ln \relax (x)\,\left (216\,x^3-{\mathrm {e}}^x\,\left (34992\,x^2-139968\right )+54\,x^5\right )}{x^5\,{\mathrm {e}}^{3\,x}\,\ln \relax (x)+x^5\,{\ln \left (\ln \relax (x)\right )}^3\,\ln \relax (x)+3\,x^5\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)+3\,x^5\,{\ln \left (\ln \relax (x)\right )}^2\,{\mathrm {e}}^x\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 66, normalized size = 2.44 \begin {gather*} \frac {x^{3} - 54 x^{2} \log {\left (\log {\relax (x )} \right )} + \left (216 - 54 x^{2}\right ) e^{x} + 216 \log {\left (\log {\relax (x )} \right )}}{x e^{2 x} + 2 x e^{x} \log {\left (\log {\relax (x )} \right )} + x \log {\left (\log {\relax (x )} \right )}^{2}} + \frac {11664 - 5832 x^{2}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________