Optimal. Leaf size=31 \[ \log (1-x)+\log \left (6+3 \left (5+\frac {4}{x}\right )-x+e^{e^{-4+x}} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12+22 x^2-2 x^3+e^{e^{-4+x}} \left (-x^2+2 x^3+e^{-4+x} \left (-x^3+x^4\right )\right )}{-12 x-9 x^2+22 x^3-x^4+e^{e^{-4+x}} \left (-x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12-22 x^2+2 x^3-e^{e^{-4+x}} \left (-x^2+2 x^3+e^{-4+x} \left (-x^3+x^4\right )\right )}{(1-x) x \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx\\ &=\int \left (\frac {12}{(-1+x) x \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}+\frac {22 x}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}-\frac {e^{e^{-4+x}} x}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}+\frac {e^{-4+e^{-4+x}+x} x^2}{12+21 x-x^2+e^{e^{-4+x}} x^2}-\frac {2 x^2}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}+\frac {2 e^{e^{-4+x}} x^2}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx\right )+2 \int \frac {e^{e^{-4+x}} x^2}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+12 \int \frac {1}{(-1+x) x \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+22 \int \frac {x}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx-\int \frac {e^{e^{-4+x}} x}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+\int \frac {e^{-4+e^{-4+x}+x} x^2}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx\\ &=-\left (2 \int \left (\frac {1}{12+21 x-x^2+e^{e^{-4+x}} x^2}+\frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}+\frac {x}{12+21 x-x^2+e^{e^{-4+x}} x^2}\right ) \, dx\right )+2 \int \left (\frac {e^{e^{-4+x}}}{12+21 x-x^2+e^{e^{-4+x}} x^2}+\frac {e^{e^{-4+x}}}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}+\frac {e^{e^{-4+x}} x}{12+21 x-x^2+e^{e^{-4+x}} x^2}\right ) \, dx+12 \int \left (\frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}-\frac {1}{x \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}\right ) \, dx+22 \int \left (\frac {1}{12+21 x-x^2+e^{e^{-4+x}} x^2}+\frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}\right ) \, dx+\int \frac {e^{-4+e^{-4+x}+x} x^2}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx-\int \left (\frac {e^{e^{-4+x}}}{12+21 x-x^2+e^{e^{-4+x}} x^2}+\frac {e^{e^{-4+x}}}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx\right )+2 \int \frac {e^{e^{-4+x}}}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx-2 \int \frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+2 \int \frac {e^{e^{-4+x}}}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx-2 \int \frac {x}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx+2 \int \frac {e^{e^{-4+x}} x}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx+12 \int \frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx-12 \int \frac {1}{x \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+22 \int \frac {1}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx+22 \int \frac {1}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx-\int \frac {e^{e^{-4+x}}}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx-\int \frac {e^{e^{-4+x}}}{(-1+x) \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )} \, dx+\int \frac {e^{-4+e^{-4+x}+x} x^2}{12+21 x-x^2+e^{e^{-4+x}} x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 48, normalized size = 1.55 \begin {gather*} \frac {e^4 \log (1-x)-e^4 \log (x)+e^4 \log \left (12+21 x-x^2+e^{e^{-4+x}} x^2\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 33, normalized size = 1.06 \begin {gather*} \log \left (x^{2} - x\right ) + \log \left (\frac {x^{2} e^{\left (e^{\left (x - 4\right )}\right )} - x^{2} + 21 \, x + 12}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{3} - 22 \, x^{2} - {\left (2 \, x^{3} - x^{2} + {\left (x^{4} - x^{3}\right )} e^{\left (x - 4\right )}\right )} e^{\left (e^{\left (x - 4\right )}\right )} - 12}{x^{4} - 22 \, x^{3} + 9 \, x^{2} - {\left (x^{4} - x^{3}\right )} e^{\left (e^{\left (x - 4\right )}\right )} + 12 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 30, normalized size = 0.97
method | result | size |
norman | \(-\ln \relax (x )+\ln \left (x -1\right )+\ln \left ({\mathrm e}^{{\mathrm e}^{x -4}} x^{2}-x^{2}+21 x +12\right )\) | \(30\) |
risch | \(\ln \left (x^{2}-x \right )+\ln \left ({\mathrm e}^{{\mathrm e}^{x -4}}-\frac {x^{2}-21 x -12}{x^{2}}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 31, normalized size = 1.00 \begin {gather*} \log \left (x - 1\right ) + \log \relax (x) + \log \left (\frac {x^{2} e^{\left (e^{\left (x - 4\right )}\right )} - x^{2} + 21 \, x + 12}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.59, size = 31, normalized size = 1.00 \begin {gather*} \ln \left (x\,\left (x-1\right )\right )+\ln \left (\frac {21\,x-x^2+x^2\,{\mathrm {e}}^{{\mathrm {e}}^{x-4}}+12}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 0.84 \begin {gather*} \log {\left (x^{2} - x \right )} + \log {\left (e^{e^{x - 4}} + \frac {- x^{2} + 21 x + 12}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________