Optimal. Leaf size=23 \[ \left (-2+\frac {1}{16} e^{-x} x^5 \log \left (\frac {3}{\log (x)}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 1.33, antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 6, number of rules used = 4, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {12, 6688, 6742, 2288} \begin {gather*} \frac {1}{256} e^{-2 x} x^{10} \log ^2\left (\frac {3}{\log (x)}\right )-\frac {1}{4} e^{-x} x^5 \log \left (\frac {3}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{128} \int \frac {e^{-2 x} \left (32 e^x x^4+\left (-x^9+e^x \left (-160 x^4+32 x^5\right ) \log (x)\right ) \log \left (\frac {3}{\log (x)}\right )+\left (5 x^9-x^{10}\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )\right )}{\log (x)} \, dx\\ &=\frac {1}{128} \int \frac {e^{-2 x} x^4 \left (32 e^x-x^5 \log \left (\frac {3}{\log (x)}\right )\right ) \left (1+(-5+x) \log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{\log (x)} \, dx\\ &=\frac {1}{128} \int \left (\frac {32 e^{-x} x^4 \left (1-5 \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{\log (x)}-\frac {e^{-2 x} x^9 \log \left (\frac {3}{\log (x)}\right ) \left (1-5 \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{\log (x)}\right ) \, dx\\ &=-\left (\frac {1}{128} \int \frac {e^{-2 x} x^9 \log \left (\frac {3}{\log (x)}\right ) \left (1-5 \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{\log (x)} \, dx\right )+\frac {1}{4} \int \frac {e^{-x} x^4 \left (1-5 \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{\log (x)} \, dx\\ &=-\frac {1}{4} e^{-x} x^5 \log \left (\frac {3}{\log (x)}\right )+\frac {1}{256} e^{-2 x} x^{10} \log ^2\left (\frac {3}{\log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 36, normalized size = 1.57 \begin {gather*} \frac {1}{256} e^{-2 x} x^5 \log \left (\frac {3}{\log (x)}\right ) \left (-64 e^x+x^5 \log \left (\frac {3}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 34, normalized size = 1.48 \begin {gather*} \frac {1}{256} \, {\left (x^{10} \log \left (\frac {3}{\log \relax (x)}\right )^{2} - 64 \, x^{5} e^{x} \log \left (\frac {3}{\log \relax (x)}\right )\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (32 \, x^{4} e^{x} - {\left (x^{10} - 5 \, x^{9}\right )} \log \relax (x) \log \left (\frac {3}{\log \relax (x)}\right )^{2} - {\left (x^{9} - 32 \, {\left (x^{5} - 5 \, x^{4}\right )} e^{x} \log \relax (x)\right )} \log \left (\frac {3}{\log \relax (x)}\right )\right )} e^{\left (-2 \, x\right )}}{128 \, \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 65, normalized size = 2.83
method | result | size |
risch | \(\frac {x^{10} {\mathrm e}^{-2 x} \ln \left (\ln \relax (x )\right )^{2}}{256}-\frac {x^{5} \left (2 x^{5} \ln \relax (3)-64 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-2 x} \ln \left (\ln \relax (x )\right )}{256}+\frac {x^{5} \left (4 x^{5} \ln \relax (3)^{2}-256 \ln \relax (3) {\mathrm e}^{x}\right ) {\mathrm e}^{-2 x}}{1024}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 64, normalized size = 2.78 \begin {gather*} \frac {1}{256} \, x^{10} e^{\left (-2 \, x\right )} \log \relax (3)^{2} + \frac {1}{256} \, x^{10} e^{\left (-2 \, x\right )} \log \left (\log \relax (x)\right )^{2} - \frac {1}{4} \, x^{5} e^{\left (-x\right )} \log \relax (3) - \frac {1}{128} \, {\left (x^{10} e^{\left (-2 \, x\right )} \log \relax (3) - 32 \, x^{5} e^{\left (-x\right )}\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-2\,x}\,\left (\frac {x^4\,{\mathrm {e}}^x}{4}-\frac {\ln \left (\frac {3}{\ln \relax (x)}\right )\,\left (x^9+{\mathrm {e}}^x\,\ln \relax (x)\,\left (160\,x^4-32\,x^5\right )\right )}{128}+\frac {{\ln \left (\frac {3}{\ln \relax (x)}\right )}^2\,\ln \relax (x)\,\left (5\,x^9-x^{10}\right )}{128}\right )}{\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 82.52, size = 32, normalized size = 1.39 \begin {gather*} \frac {x^{10} e^{- 2 x} \log {\left (\frac {3}{\log {\relax (x )}} \right )}^{2}}{256} - \frac {x^{5} e^{- x} \log {\left (\frac {3}{\log {\relax (x )}} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________