Optimal. Leaf size=25 \[ \left (e^{8 e}+\frac {4}{4+x^2+\frac {\log (5)}{x}}\right ) \log (\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 1.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^2+4 x^4+4 x \log (5)+e^{8 e} \left (16 x^2+8 x^4+x^6+\left (8 x+2 x^3\right ) \log (5)+\log ^2(5)\right )+\left (-8 x^4+4 x \log (5)\right ) \log (x) \log (\log (x))}{\left (16 x^3+8 x^5+x^7+\left (8 x^2+2 x^4\right ) \log (5)+x \log ^2(5)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {\left (4 x+x^3+\log (5)\right ) \left (4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)\right )}{x \log (x)}+4 \left (-2 x^3+\log (5)\right ) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2} \, dx\\ &=\int \left (\frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)}-\frac {4 \left (2 x^3-\log (5)\right ) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {\left (2 x^3-\log (5)\right ) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2} \, dx\right )+\int \frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)} \, dx\\ &=-\left (4 \int \left (\frac {2 \log (\log (x))}{4 x+x^3+\log (5)}-\frac {(8 x+\log (125)) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2}\right ) \, dx\right )+\int \frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)} \, dx\\ &=4 \int \frac {(8 x+\log (125)) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2} \, dx-8 \int \frac {\log (\log (x))}{4 x+x^3+\log (5)} \, dx+\int \frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)} \, dx\\ &=4 \int \left (\frac {8 x \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2}+\frac {\log (125) \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2}\right ) \, dx-8 \int \frac {\log (\log (x))}{4 x+x^3+\log (5)} \, dx+\int \frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)} \, dx\\ &=-\left (8 \int \frac {\log (\log (x))}{4 x+x^3+\log (5)} \, dx\right )+32 \int \frac {x \log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2} \, dx+(4 \log (125)) \int \frac {\log (\log (x))}{\left (4 x+x^3+\log (5)\right )^2} \, dx+\int \frac {4 \left (1+e^{8 e}\right ) x+e^{8 e} x^3+e^{8 e} \log (5)}{x \left (4 x+x^3+\log (5)\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 24, normalized size = 0.96 \begin {gather*} \left (e^{8 e}+\frac {4 x}{4 x+x^3+\log (5)}\right ) \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 39, normalized size = 1.56 \begin {gather*} \frac {{\left ({\left (x^{3} + 4 \, x + \log \relax (5)\right )} e^{\left (2 \, e^{\left (2 \, \log \relax (2) + 1\right )}\right )} + 4 \, x\right )} \log \left (\log \relax (x)\right )}{x^{3} + 4 \, x + \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 53, normalized size = 2.12 \begin {gather*} \frac {x^{3} e^{\left (8 \, e\right )} \log \left (\log \relax (x)\right ) + 4 \, x e^{\left (8 \, e\right )} \log \left (\log \relax (x)\right ) + e^{\left (8 \, e\right )} \log \relax (5) \log \left (\log \relax (x)\right ) + 4 \, x \log \left (\log \relax (x)\right )}{x^{3} + 4 \, x + \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 1.12
method | result | size |
risch | \(\frac {4 x \ln \left (\ln \relax (x )\right )}{x^{3}+\ln \relax (5)+4 x}+{\mathrm e}^{8 \,{\mathrm e}} \ln \left (\ln \relax (x )\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 43, normalized size = 1.72 \begin {gather*} \frac {{\left (x^{3} e^{\left (8 \, e\right )} + 4 \, x {\left (e^{\left (8 \, e\right )} + 1\right )} + e^{\left (8 \, e\right )} \log \relax (5)\right )} \log \left (\log \relax (x)\right )}{x^{3} + 4 \, x + \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {4\,x\,\ln \relax (5)+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,\ln \relax (2)+1}}\,\left (\ln \relax (5)\,\left (2\,x^3+8\,x\right )+{\ln \relax (5)}^2+16\,x^2+8\,x^4+x^6\right )+16\,x^2+4\,x^4+\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (4\,x\,\ln \relax (5)-8\,x^4\right )}{\ln \relax (x)\,\left (\ln \relax (5)\,\left (2\,x^4+8\,x^2\right )+x\,{\ln \relax (5)}^2+16\,x^3+8\,x^5+x^7\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 29, normalized size = 1.16 \begin {gather*} \frac {4 x \log {\left (\log {\relax (x )} \right )}}{x^{3} + 4 x + \log {\relax (5 )}} + e^{8 e} \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________