Optimal. Leaf size=32 \[ \left (4-\frac {1}{e^4}\right ) (-3+x) \left (-3+\left (2-e^{e^x}-x\right )^2-x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 81, normalized size of antiderivative = 2.53, number of steps used = 4, number of rules used = 2, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {12, 2288} \begin {gather*} \frac {4 x^2}{e^4}-2 e^{e^x-4} \left (x^2-4 e^4 \left (x^2-5 x+6\right )-5 x+6\right )-\frac {1}{4} (13-8 x)^2+e^{2 e^x-4} \left (-4 e^4 (3-x)-x+3\right )-\frac {13 x}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-13+e^4 (52-32 x)+8 x+e^{2 e^x} \left (-1+4 e^4+e^x \left (6-2 x+e^4 (-24+8 x)\right )\right )+e^{e^x} \left (10-4 x+e^4 (-40+16 x)+e^x \left (-12+10 x-2 x^2+e^4 \left (48-40 x+8 x^2\right )\right )\right )\right ) \, dx}{e^4}\\ &=-\frac {1}{4} (13-8 x)^2-\frac {13 x}{e^4}+\frac {4 x^2}{e^4}+\frac {\int e^{2 e^x} \left (-1+4 e^4+e^x \left (6-2 x+e^4 (-24+8 x)\right )\right ) \, dx}{e^4}+\frac {\int e^{e^x} \left (10-4 x+e^4 (-40+16 x)+e^x \left (-12+10 x-2 x^2+e^4 \left (48-40 x+8 x^2\right )\right )\right ) \, dx}{e^4}\\ &=-\frac {1}{4} (13-8 x)^2+e^{-4+2 e^x} \left (3-4 e^4 (3-x)-x\right )-\frac {13 x}{e^4}+\frac {4 x^2}{e^4}-2 e^{-4+e^x} \left (6-5 x+x^2-4 e^4 \left (6-5 x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 47, normalized size = 1.47 \begin {gather*} \frac {\left (-1+4 e^4\right ) \left (e^{2 e^x} (-3+x)+13 x-4 x^2+e^{e^x} \left (12-10 x+2 x^2\right )\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.46, size = 68, normalized size = 2.12 \begin {gather*} {\left (4 \, x^{2} - 4 \, {\left (4 \, x^{2} - 13 \, x\right )} e^{4} + {\left (4 \, {\left (x - 3\right )} e^{4} - x + 3\right )} e^{\left (2 \, e^{x}\right )} - 2 \, {\left (x^{2} - 4 \, {\left (x^{2} - 5 \, x + 6\right )} e^{4} - 5 \, x + 6\right )} e^{\left (e^{x}\right )} - 13 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 119, normalized size = 3.72 \begin {gather*} {\left (4 \, x^{2} - 4 \, {\left (4 \, x^{2} - 13 \, x\right )} e^{4} + 2 \, {\left (4 \, x^{2} e^{\left (x + e^{x} + 4\right )} - x^{2} e^{\left (x + e^{x}\right )} - 20 \, x e^{\left (x + e^{x} + 4\right )} + 5 \, x e^{\left (x + e^{x}\right )} + 24 \, e^{\left (x + e^{x} + 4\right )} - 6 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} - x e^{\left (2 \, e^{x}\right )} + 4 \, x e^{\left (2 \, e^{x} + 4\right )} - 13 \, x + 3 \, e^{\left (2 \, e^{x}\right )} - 12 \, e^{\left (2 \, e^{x} + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 76, normalized size = 2.38
method | result | size |
risch | \(-16 x^{2}+52 x +4 x^{2} {\mathrm e}^{-4}-13 x \,{\mathrm e}^{-4}+\left (4 x \,{\mathrm e}^{4}-12 \,{\mathrm e}^{4}-x +3\right ) {\mathrm e}^{-4+2 \,{\mathrm e}^{x}}+\left (8 x^{2} {\mathrm e}^{4}-40 x \,{\mathrm e}^{4}-2 x^{2}+48 \,{\mathrm e}^{4}+10 x -12\right ) {\mathrm e}^{{\mathrm e}^{x}-4}\) | \(76\) |
default | \({\mathrm e}^{-4} \left (-13 x +{\mathrm e}^{4} \left (-16 x^{2}+52 x \right )+\left (-12 \,{\mathrm e}^{4}+3\right ) {\mathrm e}^{2 \,{\mathrm e}^{x}}+\left (4 \,{\mathrm e}^{4}-1\right ) x \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+\left (48 \,{\mathrm e}^{4}-12\right ) {\mathrm e}^{{\mathrm e}^{x}}+\left (-40 \,{\mathrm e}^{4}+10\right ) x \,{\mathrm e}^{{\mathrm e}^{x}}+\left (8 \,{\mathrm e}^{4}-2\right ) x^{2} {\mathrm e}^{{\mathrm e}^{x}}+4 x^{2}\right )\) | \(86\) |
norman | \(\left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+13 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x -4 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x^{2}+12 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} {\mathrm e}^{{\mathrm e}^{x}}-3 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} {\mathrm e}^{2 \,{\mathrm e}^{x}}-10 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x \,{\mathrm e}^{{\mathrm e}^{x}}+2 \left (4 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x^{2} {\mathrm e}^{{\mathrm e}^{x}}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 75, normalized size = 2.34 \begin {gather*} {\left (4 \, x^{2} - 4 \, {\left (4 \, x^{2} - 13 \, x\right )} e^{4} + {\left (x {\left (4 \, e^{4} - 1\right )} - 12 \, e^{4} + 3\right )} e^{\left (2 \, e^{x}\right )} + 2 \, {\left (x^{2} {\left (4 \, e^{4} - 1\right )} - 5 \, x {\left (4 \, e^{4} - 1\right )} + 24 \, e^{4} - 6\right )} e^{\left (e^{x}\right )} - 13 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.32, size = 89, normalized size = 2.78 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}\,\left ({\mathrm {e}}^{-4}\,\left (8\,{\mathrm {e}}^4-2\right )\,x^2-{\mathrm {e}}^{-4}\,\left (40\,{\mathrm {e}}^4-10\right )\,x+{\mathrm {e}}^{-4}\,\left (48\,{\mathrm {e}}^4-12\right )\right )-{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left ({\mathrm {e}}^{-4}\,\left (12\,{\mathrm {e}}^4-3\right )-x\,{\mathrm {e}}^{-4}\,\left (4\,{\mathrm {e}}^4-1\right )\right )+x\,{\mathrm {e}}^{-4}\,\left (52\,{\mathrm {e}}^4-13\right )-\frac {x^2\,{\mathrm {e}}^{-4}\,\left (32\,{\mathrm {e}}^4-8\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 102, normalized size = 3.19 \begin {gather*} \frac {x^{2} \left (4 - 16 e^{4}\right )}{e^{4}} + \frac {x \left (-13 + 52 e^{4}\right )}{e^{4}} + \frac {\left (- x e^{4} + 4 x e^{8} - 12 e^{8} + 3 e^{4}\right ) e^{2 e^{x}} + \left (- 2 x^{2} e^{4} + 8 x^{2} e^{8} - 40 x e^{8} + 10 x e^{4} - 12 e^{4} + 48 e^{8}\right ) e^{e^{x}}}{e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________