Optimal. Leaf size=24 \[ x+\frac {\log (5)}{e^{-x+(3-x) x}-4 x} \]
________________________________________________________________________________________
Rubi [F] time = 3.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4 x-2 x^2}+16 x^2+4 \log (5)+e^{2 x-x^2} (-8 x+(-2+2 x) \log (5))}{e^{4 x-2 x^2}-8 e^{2 x-x^2} x+16 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x^2} \left (e^{4 x-2 x^2}+16 x^2+4 \log (5)+e^{2 x-x^2} (-8 x+(-2+2 x) \log (5))\right )}{\left (e^{2 x}-4 e^{x^2} x\right )^2} \, dx\\ &=\int \left (1+2 e^{-2 x+x^2} (-1+x) \log (5)-\frac {8 e^{2 x^2} (-1+x) x \log (5)}{-e^{4 x}+4 e^{x (2+x)} x}+\frac {4 e^{2 x^2} \left (1-2 x+2 x^2\right ) \log (5)}{\left (e^{2 x}-4 e^{x^2} x\right )^2}\right ) \, dx\\ &=x+(2 \log (5)) \int e^{-2 x+x^2} (-1+x) \, dx+(4 \log (5)) \int \frac {e^{2 x^2} \left (1-2 x+2 x^2\right )}{\left (e^{2 x}-4 e^{x^2} x\right )^2} \, dx-(8 \log (5)) \int \frac {e^{2 x^2} (-1+x) x}{-e^{4 x}+4 e^{x (2+x)} x} \, dx\\ &=x+e^{-2 x+x^2} \log (5)+(4 \log (5)) \int \left (\frac {e^{2 x^2}}{\left (e^{2 x}-4 e^{x^2} x\right )^2}-\frac {2 e^{2 x^2} x}{\left (-e^{2 x}+4 e^{x^2} x\right )^2}+\frac {2 e^{2 x^2} x^2}{\left (-e^{2 x}+4 e^{x^2} x\right )^2}\right ) \, dx-(8 \log (5)) \int \left (-\frac {e^{2 x^2} x}{-e^{4 x}+4 e^{x (2+x)} x}+\frac {e^{2 x^2} x^2}{-e^{4 x}+4 e^{x (2+x)} x}\right ) \, dx\\ &=x+e^{-2 x+x^2} \log (5)+(4 \log (5)) \int \frac {e^{2 x^2}}{\left (e^{2 x}-4 e^{x^2} x\right )^2} \, dx-(8 \log (5)) \int \frac {e^{2 x^2} x}{\left (-e^{2 x}+4 e^{x^2} x\right )^2} \, dx+(8 \log (5)) \int \frac {e^{2 x^2} x^2}{\left (-e^{2 x}+4 e^{x^2} x\right )^2} \, dx+(8 \log (5)) \int \frac {e^{2 x^2} x}{-e^{4 x}+4 e^{x (2+x)} x} \, dx-(8 \log (5)) \int \frac {e^{2 x^2} x^2}{-e^{4 x}+4 e^{x (2+x)} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.71, size = 39, normalized size = 1.62 \begin {gather*} \frac {e^{2 x} x+e^{x^2} \left (-4 x^2+\log (5)\right )}{e^{2 x}-4 e^{x^2} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 42, normalized size = 1.75 \begin {gather*} \frac {4 \, x^{2} - x e^{\left (-x^{2} + 2 \, x\right )} - \log \relax (5)}{4 \, x - e^{\left (-x^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 42, normalized size = 1.75 \begin {gather*} \frac {4 \, x^{2} - x e^{\left (-x^{2} + 2 \, x\right )} - \log \relax (5)}{4 \, x - e^{\left (-x^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.92
method | result | size |
risch | \(x -\frac {\ln \relax (5)}{4 x -{\mathrm e}^{-\left (x -2\right ) x}}\) | \(22\) |
norman | \(\frac {4 x^{2}-x \,{\mathrm e}^{-x^{2}+2 x}-\ln \relax (5)}{4 x -{\mathrm e}^{-x^{2}+2 x}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 40, normalized size = 1.67 \begin {gather*} \frac {{\left (4 \, x^{2} - \log \relax (5)\right )} e^{\left (x^{2}\right )} - x e^{\left (2 \, x\right )}}{4 \, x e^{\left (x^{2}\right )} - e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 24, normalized size = 1.00 \begin {gather*} x-\frac {\ln \relax (5)}{4\,x-{\mathrm {e}}^{2\,x-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.62 \begin {gather*} x + \frac {\log {\relax (5 )}}{- 4 x + e^{- x^{2} + 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________