Optimal. Leaf size=27 \[ e^{\frac {3 \left (x+\left (\frac {1}{10}+x\right ) (3+x)\right )}{\log \left (\frac {2}{x}+x\right )}} x \]
________________________________________________________________________________________
Rubi [B] time = 1.18, antiderivative size = 164, normalized size of antiderivative = 6.07, number of steps used = 1, number of rules used = 1, integrand size = 120, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2288} \begin {gather*} -\frac {e^{\frac {3 \left (10 x^2+41 x+3\right )}{10 \log \left (\frac {x^2+2}{x}\right )}} \left (-10 x^4-41 x^3+17 x^2+\left (20 x^4+41 x^3+40 x^2+82 x\right ) \log \left (\frac {x^2+2}{x}\right )+82 x+6\right )}{\left (x^2+2\right ) \left (\frac {x \left (10 x^2+41 x+3\right ) \left (2-\frac {x^2+2}{x^2}\right )}{\left (x^2+2\right ) \log ^2\left (\frac {x^2+2}{x}\right )}-\frac {20 x+41}{\log \left (\frac {x^2+2}{x}\right )}\right ) \log ^2\left (\frac {x^2+2}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{\frac {3 \left (3+41 x+10 x^2\right )}{10 \log \left (\frac {2+x^2}{x}\right )}} \left (6+82 x+17 x^2-41 x^3-10 x^4+\left (82 x+40 x^2+41 x^3+20 x^4\right ) \log \left (\frac {2+x^2}{x}\right )\right )}{\left (2+x^2\right ) \left (\frac {x \left (3+41 x+10 x^2\right ) \left (2-\frac {2+x^2}{x^2}\right )}{\left (2+x^2\right ) \log ^2\left (\frac {2+x^2}{x}\right )}-\frac {41+20 x}{\log \left (\frac {2+x^2}{x}\right )}\right ) \log ^2\left (\frac {2+x^2}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 28, normalized size = 1.04 \begin {gather*} e^{\frac {3 \left (3+41 x+10 x^2\right )}{10 \log \left (\frac {2}{x}+x\right )}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 27, normalized size = 1.00 \begin {gather*} x e^{\left (\frac {3 \, {\left (10 \, x^{2} + 41 \, x + 3\right )}}{10 \, \log \left (\frac {x^{2} + 2}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (30 \, x^{4} + 123 \, x^{3} - 10 \, {\left (x^{2} + 2\right )} \log \left (\frac {x^{2} + 2}{x}\right )^{2} - 51 \, x^{2} - 3 \, {\left (20 \, x^{4} + 41 \, x^{3} + 40 \, x^{2} + 82 \, x\right )} \log \left (\frac {x^{2} + 2}{x}\right ) - 246 \, x - 18\right )} e^{\left (\frac {3 \, {\left (10 \, x^{2} + 41 \, x + 3\right )}}{10 \, \log \left (\frac {x^{2} + 2}{x}\right )}\right )}}{10 \, {\left (x^{2} + 2\right )} \log \left (\frac {x^{2} + 2}{x}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.04
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {3 x^{2}+\frac {123}{10} x +\frac {9}{10}}{\ln \left (\frac {x^{2}+2}{x}\right )}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.82, size = 62, normalized size = 2.30 \begin {gather*} x\,{\mathrm {e}}^{\frac {3\,x^2}{\ln \left (\frac {1}{x}\right )+\ln \left (x^2+2\right )}}\,{\mathrm {e}}^{\frac {9}{10\,\left (\ln \left (\frac {1}{x}\right )+\ln \left (x^2+2\right )\right )}}\,{\mathrm {e}}^{\frac {123\,x}{10\,\left (\ln \left (\frac {1}{x}\right )+\ln \left (x^2+2\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.35, size = 24, normalized size = 0.89 \begin {gather*} x e^{\frac {3 x^{2} + \frac {123 x}{10} + \frac {9}{10}}{\log {\left (\frac {x^{2} + 2}{x} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________