Optimal. Leaf size=19 \[ -\frac {1}{2}+x+\log \left (e^{2+\frac {x}{4}}+16 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64+5 e^{\frac {8+x}{4}}+64 x}{4 e^{\frac {8+x}{4}}+64 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64+5 e^{\frac {8+x}{4}}+64 x}{4 \left (e^{2+\frac {x}{4}}+16 x\right )} \, dx\\ &=\frac {1}{4} \int \frac {64+5 e^{\frac {8+x}{4}}+64 x}{e^{2+\frac {x}{4}}+16 x} \, dx\\ &=\frac {1}{4} \int \left (5-\frac {16 (-4+x)}{e^{2+\frac {x}{4}}+16 x}\right ) \, dx\\ &=\frac {5 x}{4}-4 \int \frac {-4+x}{e^{2+\frac {x}{4}}+16 x} \, dx\\ &=\frac {5 x}{4}-4 \int \left (-\frac {4}{e^{2+\frac {x}{4}}+16 x}+\frac {x}{e^{2+\frac {x}{4}}+16 x}\right ) \, dx\\ &=\frac {5 x}{4}-4 \int \frac {x}{e^{2+\frac {x}{4}}+16 x} \, dx+16 \int \frac {1}{e^{2+\frac {x}{4}}+16 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 0.84 \begin {gather*} x+\log \left (e^{2+\frac {x}{4}}+16 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 13, normalized size = 0.68 \begin {gather*} x + \log \left (16 \, x + e^{\left (\frac {1}{4} \, x + 2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 13, normalized size = 0.68 \begin {gather*} x + \log \left (16 \, x + e^{\left (\frac {1}{4} \, x + 2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 15, normalized size = 0.79
method | result | size |
risch | \(x -2+\ln \left ({\mathrm e}^{2+\frac {x}{4}}+16 x \right )\) | \(15\) |
norman | \(x +\ln \left (4 \,{\mathrm e}^{2+\frac {x}{4}}+64 x \right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.84 \begin {gather*} x + \log \left ({\left (16 \, x + e^{\left (\frac {1}{4} \, x + 2\right )}\right )} e^{\left (-2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 13, normalized size = 0.68 \begin {gather*} x+\ln \left (16\,x+{\mathrm {e}}^{\frac {x}{4}+2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.89 \begin {gather*} \frac {19 x}{16} + \frac {\log {\left (16 x + e^{\frac {x}{4} + 2} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________