Optimal. Leaf size=27 \[ \frac {e^{4 x} x}{x-\frac {e+\frac {3 x^2}{13}}{5 x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 3, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {28, 6741, 2288} \begin {gather*} -\frac {65 e^{4 x} x \left (13 e x-62 x^3\right )}{\left (13 e-62 x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=3844 \int \frac {e^{4 x} \left (16120 x^4+e \left (-1690 x-3380 x^2\right )\right )}{\left (-806 e+3844 x^2\right )^2} \, dx\\ &=3844 \int \frac {e^{4 x} x \left (-1690 e-3380 e x+16120 x^3\right )}{\left (806 e-3844 x^2\right )^2} \, dx\\ &=-\frac {65 e^{4 x} x \left (13 e x-62 x^3\right )}{\left (13 e-62 x^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 0.78 \begin {gather*} \frac {130 e^{4 x} x^2}{-26 e+124 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 21, normalized size = 0.78 \begin {gather*} \frac {65 \, x^{2} e^{\left (4 \, x\right )}}{62 \, x^{2} - 13 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 32, normalized size = 1.19 \begin {gather*} \frac {65 \, {\left (62 \, x^{2} e^{\left (4 \, x\right )} + 13 \, e^{\left (4 \, x + 1\right )}\right )}}{62 \, {\left (62 \, x^{2} - 13 \, e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 0.81
method | result | size |
gosper | \(-\frac {65 \,{\mathrm e}^{4 x} x^{2}}{-62 x^{2}+13 \,{\mathrm e}}\) | \(22\) |
norman | \(-\frac {65 \,{\mathrm e}^{4 x} x^{2}}{-62 x^{2}+13 \,{\mathrm e}}\) | \(22\) |
derivativedivides | \(\frac {65 \,{\mathrm e}^{4 x}}{62}+\frac {6760 \,{\mathrm e}^{4 x} {\mathrm e} x}{31 \left (-496 x^{2}+104 \,{\mathrm e}\right )}-\frac {65 \,{\mathrm e} \sqrt {806}\, \left (2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+93 \,{\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-93 \,{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{119164}-3380 \,{\mathrm e} \left (\frac {2 \,{\mathrm e}^{4 x} x}{31 \left (-496 x^{2}+104 \,{\mathrm e}\right )}-\frac {\sqrt {806}\, \left (2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+31 \,{\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-31 \,{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{6196528}\right )-6760 \,{\mathrm e} \left (\frac {{\mathrm e}^{4 x}}{-30752 x^{2}+6448 \,{\mathrm e}}-\frac {\sqrt {806}\, \left ({\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{199888}\right )\) | \(357\) |
default | \(\frac {65 \,{\mathrm e}^{4 x}}{62}+\frac {6760 \,{\mathrm e}^{4 x} {\mathrm e} x}{31 \left (-496 x^{2}+104 \,{\mathrm e}\right )}-\frac {65 \,{\mathrm e} \sqrt {806}\, \left (2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+93 \,{\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-93 \,{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{119164}-3380 \,{\mathrm e} \left (\frac {2 \,{\mathrm e}^{4 x} x}{31 \left (-496 x^{2}+104 \,{\mathrm e}\right )}-\frac {\sqrt {806}\, \left (2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}} {\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )+31 \,{\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-31 \,{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{6196528}\right )-6760 \,{\mathrm e} \left (\frac {{\mathrm e}^{4 x}}{-30752 x^{2}+6448 \,{\mathrm e}}-\frac {\sqrt {806}\, \left ({\mathrm e}^{\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x +\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )-{\mathrm e}^{-\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}} \expIntegralEi \left (1, -4 x -\frac {2 \sqrt {806}\, {\mathrm e}^{\frac {1}{2}}}{31}\right )\right ) {\mathrm e}^{-\frac {1}{2}}}{199888}\right )\) | \(357\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.78 \begin {gather*} \frac {65 \, x^{2} e^{\left (4 \, x\right )}}{62 \, x^{2} - 13 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.44, size = 21, normalized size = 0.78 \begin {gather*} -\frac {65\,x^2\,{\mathrm {e}}^{4\,x}}{62\,\left (\frac {13\,\mathrm {e}}{62}-x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.70 \begin {gather*} \frac {65 x^{2} e^{4 x}}{62 x^{2} - 13 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________