Optimal. Leaf size=22 \[ \frac {-4+e^{\frac {e^{3 x}}{x}}}{\log \left (-\frac {x}{3}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+e^{\frac {e^{3 x}}{x}} \left (-1+\frac {e^{3 x} (-1+3 x) \log \left (-\frac {x}{3}\right )}{x}\right )}{x \log ^2\left (-\frac {x}{3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {-4+e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )}+\frac {e^{\frac {e^{3 x}}{x}+3 x} (-1+3 x)}{x^2 \log \left (-\frac {x}{3}\right )}\right ) \, dx\\ &=-\int \frac {-4+e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )} \, dx+\int \frac {e^{\frac {e^{3 x}}{x}+3 x} (-1+3 x)}{x^2 \log \left (-\frac {x}{3}\right )} \, dx\\ &=-\int \left (-\frac {4}{x \log ^2\left (-\frac {x}{3}\right )}+\frac {e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )}\right ) \, dx+\int \left (-\frac {e^{\frac {e^{3 x}}{x}+3 x}}{x^2 \log \left (-\frac {x}{3}\right )}+\frac {3 e^{\frac {e^{3 x}}{x}+3 x}}{x \log \left (-\frac {x}{3}\right )}\right ) \, dx\\ &=3 \int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x \log \left (-\frac {x}{3}\right )} \, dx+4 \int \frac {1}{x \log ^2\left (-\frac {x}{3}\right )} \, dx-\int \frac {e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )} \, dx-\int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x^2 \log \left (-\frac {x}{3}\right )} \, dx\\ &=3 \int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x \log \left (-\frac {x}{3}\right )} \, dx+4 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (-\frac {x}{3}\right )\right )-\int \frac {e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )} \, dx-\int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x^2 \log \left (-\frac {x}{3}\right )} \, dx\\ &=-\frac {4}{\log \left (-\frac {x}{3}\right )}+3 \int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x \log \left (-\frac {x}{3}\right )} \, dx-\int \frac {e^{\frac {e^{3 x}}{x}}}{x \log ^2\left (-\frac {x}{3}\right )} \, dx-\int \frac {e^{\frac {e^{3 x}}{x}+3 x}}{x^2 \log \left (-\frac {x}{3}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 22, normalized size = 1.00 \begin {gather*} \frac {-4+e^{\frac {e^{3 x}}{x}}}{\log \left (-\frac {x}{3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 27, normalized size = 1.23 \begin {gather*} \frac {e^{\left (-e^{\left (3 \, x - \log \relax (3) - \log \left (-\frac {1}{3} \, x\right )\right )}\right )} - 4}{\log \left (-\frac {1}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 36, normalized size = 1.64 \begin {gather*} -\frac {{\left (4 \, e^{\left (3 \, x\right )} - e^{\left (\frac {3 \, x^{2} + e^{\left (3 \, x\right )}}{x}\right )}\right )} e^{\left (-3 \, x\right )}}{\log \left (-\frac {1}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.28, size = 89, normalized size = 4.05
method | result | size |
risch | \(-\frac {8 i}{2 \pi \mathrm {csgn}\left (i x \right )^{2}-2 \pi \mathrm {csgn}\left (i x \right )^{3}-2 \pi -2 i \ln \relax (3)+2 i \ln \relax (x )}+\frac {2 i {\mathrm e}^{\frac {{\mathrm e}^{3 x}}{x}}}{2 \pi \mathrm {csgn}\left (i x \right )^{2}-2 \pi \mathrm {csgn}\left (i x \right )^{3}-2 \pi -2 i \ln \relax (3)+2 i \ln \relax (x )}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 1.41 \begin {gather*} -\frac {e^{\left (\frac {e^{\left (3 \, x\right )}}{x}\right )}}{\log \relax (3) - \log \left (-x\right )} - \frac {4}{\log \left (-\frac {1}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.48, size = 18, normalized size = 0.82 \begin {gather*} \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{3\,x}}{x}}-4}{\ln \left (-\frac {x}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {e^{3 x}}{x}}}{\log {\left (- \frac {x}{3} \right )}} - \frac {4}{\log {\left (- \frac {x}{3} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________