Optimal. Leaf size=20 \[ \frac {1}{2} \left (1+e^x+\frac {3 e^{25}}{x^2}-3 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 6, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {12, 14, 2194} \begin {gather*} \frac {3 e^{25}}{2 x^2}-\frac {3 x}{2}+\frac {e^x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-6 e^{25}-3 x^3+e^x x^3}{x^3} \, dx\\ &=\frac {1}{2} \int \left (e^x-\frac {3 \left (2 e^{25}+x^3\right )}{x^3}\right ) \, dx\\ &=\frac {\int e^x \, dx}{2}-\frac {3}{2} \int \frac {2 e^{25}+x^3}{x^3} \, dx\\ &=\frac {e^x}{2}-\frac {3}{2} \int \left (1+\frac {2 e^{25}}{x^3}\right ) \, dx\\ &=\frac {e^x}{2}+\frac {3 e^{25}}{2 x^2}-\frac {3 x}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} \frac {1}{2} \left (e^x+\frac {3 e^{25}}{x^2}-3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 22, normalized size = 1.10 \begin {gather*} -\frac {3 \, x^{3} - x^{2} e^{x} - 3 \, e^{25}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 22, normalized size = 1.10 \begin {gather*} -\frac {3 \, x^{3} - x^{2} e^{x} - 3 \, e^{25}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.80
method | result | size |
default | \(-\frac {3 x}{2}+\frac {3 \,{\mathrm e}^{25}}{2 x^{2}}+\frac {{\mathrm e}^{x}}{2}\) | \(16\) |
risch | \(-\frac {3 x}{2}+\frac {3 \,{\mathrm e}^{25}}{2 x^{2}}+\frac {{\mathrm e}^{x}}{2}\) | \(16\) |
norman | \(\frac {-\frac {3 x^{3}}{2}+\frac {{\mathrm e}^{x} x^{2}}{2}+\frac {3 \,{\mathrm e}^{25}}{2}}{x^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.75 \begin {gather*} -\frac {3}{2} \, x + \frac {3 \, e^{25}}{2 \, x^{2}} + \frac {1}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 15, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^x}{2}-\frac {3\,x}{2}+\frac {3\,{\mathrm {e}}^{25}}{2\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.95 \begin {gather*} - \frac {3 x}{2} + \frac {e^{x}}{2} + \frac {3 e^{25}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________