Optimal. Leaf size=28 \[ \log ^2\left (\frac {x}{-x+\frac {1}{4} \left (5+e^x+e^{x^2}+x\right )+\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.83, antiderivative size = 23, normalized size of antiderivative = 0.82, number of steps used = 2, number of rules used = 6, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {6, 6741, 12, 6742, 14, 6686} \begin {gather*} \log ^2\left (\frac {4 x}{e^{x^2}-3 x+e^x+5+\log (16)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (10+e^x (2-2 x)+e^{x^2} \left (2-4 x^2\right )+8 \log (2)\right ) \log \left (\frac {4 x}{5+e^x+e^{x^2}-3 x+4 \log (2)}\right )}{e^x x+e^{x^2} x-3 x^2+x (5+4 \log (2))} \, dx\\ &=\log ^2\left (\frac {4 x}{5+e^x+e^{x^2}-3 x+\log (16)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 30, normalized size = 1.07 \begin {gather*} \log ^2\left (\frac {4 x}{e^x+e^{x^2}-3 x+5 \left (1+\frac {4 \log (2)}{5}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 27, normalized size = 0.96 \begin {gather*} \log \left (-\frac {4 \, x}{3 \, x - e^{\left (x^{2}\right )} - e^{x} - 4 \, \log \relax (2) - 5}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (2 \, x^{2} - 1\right )} e^{\left (x^{2}\right )} + {\left (x - 1\right )} e^{x} - 4 \, \log \relax (2) - 5\right )} \log \left (-\frac {4 \, x}{3 \, x - e^{\left (x^{2}\right )} - e^{x} - 4 \, \log \relax (2) - 5}\right )}{3 \, x^{2} - x e^{\left (x^{2}\right )} - x e^{x} - 4 \, x \log \relax (2) - 5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 468, normalized size = 16.71
method | result | size |
risch | \(\ln \left (\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}\right )^{2}-2 \ln \relax (x ) \ln \left (\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}\right )-i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )+i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{2}-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{3}+i \pi \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{x}+4 \ln \relax (2)-3 x +5\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )-i \pi \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{x}+4 \ln \relax (2)-3 x +5\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{2}-i \pi \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{x}+4 \ln \relax (2)-3 x +5\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{2}+i \pi \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{x}+4 \ln \relax (2)-3 x +5\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (2)-\frac {3 x}{4}+\frac {5}{4}+\frac {{\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{x^{2}}}{4}}\right )^{3}+\ln \relax (x )^{2}\) | \(468\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 95, normalized size = 3.39 \begin {gather*} -\log \relax (x)^{2} + 2 \, \log \relax (x) \log \left (-3 \, x + e^{\left (x^{2}\right )} + e^{x} + 4 \, \log \relax (2) + 5\right ) - \log \left (-3 \, x + e^{\left (x^{2}\right )} + e^{x} + 4 \, \log \relax (2) + 5\right )^{2} + 2 \, {\left (\log \relax (x) - \log \left (-3 \, x + e^{\left (x^{2}\right )} + e^{x} + 4 \, \log \relax (2) + 5\right )\right )} \log \left (-\frac {4 \, x}{3 \, x - e^{\left (x^{2}\right )} - e^{x} - 4 \, \log \relax (2) - 5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (\frac {4\,x}{{\mathrm {e}}^{x^2}-3\,x+4\,\ln \relax (2)+{\mathrm {e}}^x+5}\right )\,\left (8\,\ln \relax (2)-{\mathrm {e}}^{x^2}\,\left (4\,x^2-2\right )-{\mathrm {e}}^x\,\left (2\,x-2\right )+10\right )}{5\,x+x\,{\mathrm {e}}^{x^2}+4\,x\,\ln \relax (2)+x\,{\mathrm {e}}^x-3\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.97, size = 24, normalized size = 0.86 \begin {gather*} \log {\left (\frac {4 x}{- 3 x + e^{x} + e^{x^{2}} + 4 \log {\relax (2 )} + 5} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________