Optimal. Leaf size=26 \[ 3 \left (\log (4)+\frac {4-x}{2 \left (4+e^{2 x}+x+\log (x)\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12-21 x+e^{2 x} \left (-27 x+6 x^2\right )-3 x \log (x)}{32 x+2 e^{4 x} x+16 x^2+2 x^3+e^{2 x} \left (16 x+4 x^2\right )+\left (16 x+4 e^{2 x} x+4 x^2\right ) \log (x)+2 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-4-\left (7+9 e^{2 x}\right ) x+2 e^{2 x} x^2-x \log (x)\right )}{2 x \left (4+e^{2 x}+x+\log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \frac {-4-\left (7+9 e^{2 x}\right ) x+2 e^{2 x} x^2-x \log (x)}{x \left (4+e^{2 x}+x+\log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \left (\frac {-9+2 x}{4+e^{2 x}+x+\log (x)}-\frac {(-4+x) \left (-1+7 x+2 x^2+2 x \log (x)\right )}{x \left (4+e^{2 x}+x+\log (x)\right )^2}\right ) \, dx\\ &=\frac {3}{2} \int \frac {-9+2 x}{4+e^{2 x}+x+\log (x)} \, dx-\frac {3}{2} \int \frac {(-4+x) \left (-1+7 x+2 x^2+2 x \log (x)\right )}{x \left (4+e^{2 x}+x+\log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \left (-\frac {9}{4+e^{2 x}+x+\log (x)}+\frac {2 x}{4+e^{2 x}+x+\log (x)}\right ) \, dx-\frac {3}{2} \int \left (\frac {-1+7 x+2 x^2+2 x \log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2}-\frac {4 \left (-1+7 x+2 x^2+2 x \log (x)\right )}{x \left (4+e^{2 x}+x+\log (x)\right )^2}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {-1+7 x+2 x^2+2 x \log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx\right )+3 \int \frac {x}{4+e^{2 x}+x+\log (x)} \, dx+6 \int \frac {-1+7 x+2 x^2+2 x \log (x)}{x \left (4+e^{2 x}+x+\log (x)\right )^2} \, dx-\frac {27}{2} \int \frac {1}{4+e^{2 x}+x+\log (x)} \, dx\\ &=-\left (\frac {3}{2} \int \left (-\frac {1}{\left (4+e^{2 x}+x+\log (x)\right )^2}+\frac {7 x}{\left (4+e^{2 x}+x+\log (x)\right )^2}+\frac {2 x^2}{\left (4+e^{2 x}+x+\log (x)\right )^2}+\frac {2 x \log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2}\right ) \, dx\right )+3 \int \frac {x}{4+e^{2 x}+x+\log (x)} \, dx+6 \int \left (\frac {7}{\left (4+e^{2 x}+x+\log (x)\right )^2}-\frac {1}{x \left (4+e^{2 x}+x+\log (x)\right )^2}+\frac {2 x}{\left (4+e^{2 x}+x+\log (x)\right )^2}+\frac {2 \log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2}\right ) \, dx-\frac {27}{2} \int \frac {1}{4+e^{2 x}+x+\log (x)} \, dx\\ &=\frac {3}{2} \int \frac {1}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx-3 \int \frac {x^2}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx-3 \int \frac {x \log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx+3 \int \frac {x}{4+e^{2 x}+x+\log (x)} \, dx-6 \int \frac {1}{x \left (4+e^{2 x}+x+\log (x)\right )^2} \, dx-\frac {21}{2} \int \frac {x}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx+12 \int \frac {x}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx+12 \int \frac {\log (x)}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx-\frac {27}{2} \int \frac {1}{4+e^{2 x}+x+\log (x)} \, dx+42 \int \frac {1}{\left (4+e^{2 x}+x+\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 21, normalized size = 0.81 \begin {gather*} \frac {3 (4-x)}{2 \left (4+e^{2 x}+x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 16, normalized size = 0.62 \begin {gather*} -\frac {3 \, {\left (x - 4\right )}}{2 \, {\left (x + e^{\left (2 \, x\right )} + \log \relax (x) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 0.62 \begin {gather*} -\frac {3 \, {\left (x - 4\right )}}{2 \, {\left (x + e^{\left (2 \, x\right )} + \log \relax (x) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.65
method | result | size |
risch | \(-\frac {3 \left (x -4\right )}{2 \left ({\mathrm e}^{2 x}+x +\ln \relax (x )+4\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 0.62 \begin {gather*} -\frac {3 \, {\left (x - 4\right )}}{2 \, {\left (x + e^{\left (2 \, x\right )} + \log \relax (x) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.34, size = 22, normalized size = 0.85 \begin {gather*} -\frac {3\,\left (x-4\right )}{2\,\left (x+{\mathrm {e}}^{2\,x}+\ln \relax (x)+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 20, normalized size = 0.77 \begin {gather*} \frac {12 - 3 x}{2 x + 2 e^{2 x} + 2 \log {\relax (x )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________