Optimal. Leaf size=33 \[ \frac {5}{x \left (-x+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x^2 \log ^3(x)+\exp \left (\frac {144+72 x+9 x^2+e^4 x^2 \log ^2(x)}{x^2 \log ^2(x)}\right ) \left (1440+720 x+90 x^2+(1440+360 x) \log (x)-10 x^2 \log ^3(x)\right )}{x^5 \log ^3(x)-2 \exp \left (\frac {144+72 x+9 x^2+e^4 x^2 \log ^2(x)}{x^2 \log ^2(x)}\right ) x^5 \log ^3(x)+\exp \left (\frac {2 \left (144+72 x+9 x^2+e^4 x^2 \log ^2(x)\right )}{x^2 \log ^2(x)}\right ) x^5 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x^2 \log ^3(x)+\exp \left (\frac {144+72 x+9 x^2+e^4 x^2 \log ^2(x)}{x^2 \log ^2(x)}\right ) \left (1440+720 x+90 x^2+(1440+360 x) \log (x)-10 x^2 \log ^3(x)\right )}{\left (1-e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^5 \log ^3(x)} \, dx\\ &=\int \left (\frac {10}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3}-\frac {10 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3}+\frac {1440 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^5 \log ^3(x)}+\frac {720 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^4 \log ^3(x)}+\frac {90 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3 \log ^3(x)}+\frac {1440 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^5 \log ^2(x)}+\frac {360 e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^4 \log ^2(x)}\right ) \, dx\\ &=10 \int \frac {1}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3} \, dx-10 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3} \, dx+90 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^3 \log ^3(x)} \, dx+360 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^4 \log ^2(x)} \, dx+720 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^4 \log ^3(x)} \, dx+1440 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^5 \log ^3(x)} \, dx+1440 \int \frac {e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right )^2 x^5 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 29, normalized size = 0.88 \begin {gather*} \frac {5}{\left (-1+e^{e^4+\frac {9 (4+x)^2}{x^2 \log ^2(x)}}\right ) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 43, normalized size = 1.30 \begin {gather*} \frac {5}{x^{2} e^{\left (\frac {x^{2} e^{4} \log \relax (x)^{2} + 9 \, x^{2} + 72 \, x + 144}{x^{2} \log \relax (x)^{2}}\right )} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 39, normalized size = 1.18
method | result | size |
risch | \(\frac {5}{x^{2} \left ({\mathrm e}^{\frac {x^{2} {\mathrm e}^{4} \ln \relax (x )^{2}+9 x^{2}+72 x +144}{x^{2} \ln \relax (x )^{2}}}-1\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 42, normalized size = 1.27 \begin {gather*} \frac {5}{x^{2} e^{\left (\frac {9}{\log \relax (x)^{2}} + \frac {72}{x \log \relax (x)^{2}} + \frac {144}{x^{2} \log \relax (x)^{2}} + e^{4}\right )} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.21, size = 69, normalized size = 2.09 \begin {gather*} \frac {80\,\ln \relax (x)+x\,\left (20\,\ln \relax (x)+40\right )+5\,x^2+80}{x^2\,\left ({\mathrm {e}}^{{\mathrm {e}}^4+\frac {9}{{\ln \relax (x)}^2}+\frac {72}{x\,{\ln \relax (x)}^2}+\frac {144}{x^2\,{\ln \relax (x)}^2}}-1\right )\,\left (x+4\right )\,\left (x+4\,\ln \relax (x)+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 39, normalized size = 1.18 \begin {gather*} \frac {5}{x^{2} e^{\frac {x^{2} e^{4} \log {\relax (x )}^{2} + 9 x^{2} + 72 x + 144}{x^{2} \log {\relax (x )}^{2}}} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________