Optimal. Leaf size=24 \[ \frac {x (i \pi +\log (3))}{e+\left (3-x+x^4\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (9+e-x^2-18 x^4+8 x^5-7 x^8\right ) (i \pi +\log (3))}{81+e^2-108 x+54 x^2-12 x^3+109 x^4-108 x^5+36 x^6-4 x^7+54 x^8-36 x^9+6 x^{10}+12 x^{12}-4 x^{13}+x^{16}+e \left (18-12 x+2 x^2+12 x^4-4 x^5+2 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(i \pi +\log (3)) \int \frac {9+e-x^2-18 x^4+8 x^5-7 x^8}{81+e^2-108 x+54 x^2-12 x^3+109 x^4-108 x^5+36 x^6-4 x^7+54 x^8-36 x^9+6 x^{10}+12 x^{12}-4 x^{13}+x^{16}+e \left (18-12 x+2 x^2+12 x^4-4 x^5+2 x^8\right )} \, dx\\ &=(i \pi +\log (3)) \int \left (\frac {7}{-9 \left (1+\frac {e}{9}\right )+6 x-x^2-6 x^4+2 x^5-x^8}+\frac {2 \left (36 \left (1+\frac {e}{9}\right )-21 x+3 x^2+12 x^4-3 x^5\right )}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}\right ) \, dx\\ &=(2 (i \pi +\log (3))) \int \frac {36 \left (1+\frac {e}{9}\right )-21 x+3 x^2+12 x^4-3 x^5}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx+(7 (i \pi +\log (3))) \int \frac {1}{-9 \left (1+\frac {e}{9}\right )+6 x-x^2-6 x^4+2 x^5-x^8} \, dx\\ &=(2 (i \pi +\log (3))) \int \frac {4 e+3 \left (12-7 x+x^2+4 x^4-x^5\right )}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(7 (i \pi +\log (3))) \int \frac {1}{-e-\left (3-x+x^4\right )^2} \, dx\\ &=(2 (i \pi +\log (3))) \int \left (\frac {36 \left (1+\frac {e}{9}\right )}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}-\frac {21 x}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}+\frac {3 x^2}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}+\frac {12 x^4}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}-\frac {3 x^5}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2}\right ) \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {\sqrt {e}}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 e}-\frac {(7 (i \pi +\log (3))) \int \frac {\sqrt {e}}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 e}\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}+(8 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (9 \left (1+\frac {e}{9}\right )-6 x+x^2+6 x^4-2 x^5+x^8\right )^2} \, dx\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}+(8 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}+(8 (9+e) (i \pi +\log (3))) \int \left (-\frac {1}{4 e \left (-3+i \sqrt {e}+x-x^4\right )^2}-\frac {1}{4 e \left (3+i \sqrt {e}-x+x^4\right )^2}-\frac {1}{2 e \left (-e-\left (3-x+x^4\right )^2\right )}\right ) \, dx\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (-3+i \sqrt {e}+x-x^4\right )^2} \, dx}{e}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (3+i \sqrt {e}-x+x^4\right )^2} \, dx}{e}-\frac {(4 (9+e) (i \pi +\log (3))) \int \frac {1}{-e-\left (3-x+x^4\right )^2} \, dx}{e}\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}+\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {\sqrt {e}}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{e^2}+\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {\sqrt {e}}{3 i+\sqrt {e}-i x+i x^4} \, dx}{e^2}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (-3+i \sqrt {e}+x-x^4\right )^2} \, dx}{e}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (3+i \sqrt {e}-x+x^4\right )^2} \, dx}{e}\\ &=(6 (i \pi +\log (3))) \int \frac {x^2}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(6 (i \pi +\log (3))) \int \frac {x^5}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx+(24 (i \pi +\log (3))) \int \frac {x^4}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-(42 (i \pi +\log (3))) \int \frac {x}{\left (e+\left (3-x+x^4\right )^2\right )^2} \, dx-\frac {(7 (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{2 \sqrt {e}}-\frac {(7 (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{2 \sqrt {e}}+\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{-3 i+\sqrt {e}+i x-i x^4} \, dx}{e^{3/2}}+\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{3 i+\sqrt {e}-i x+i x^4} \, dx}{e^{3/2}}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (-3+i \sqrt {e}+x-x^4\right )^2} \, dx}{e}-\frac {(2 (9+e) (i \pi +\log (3))) \int \frac {1}{\left (3+i \sqrt {e}-x+x^4\right )^2} \, dx}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 1.00 \begin {gather*} \frac {x (i \pi +\log (3))}{e+\left (3-x+x^4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 35, normalized size = 1.46 \begin {gather*} \frac {i \, \pi x + x \log \relax (3)}{x^{8} - 2 \, x^{5} + 6 \, x^{4} + x^{2} - 6 \, x + e + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (i \, \pi + \log \relax (3)\right )} {\left (7 \, x^{8} - 8 \, x^{5} + 18 \, x^{4} + x^{2} - e - 9\right )}}{x^{16} - 4 \, x^{13} + 12 \, x^{12} + 6 \, x^{10} - 36 \, x^{9} + 54 \, x^{8} - 4 \, x^{7} + 36 \, x^{6} - 108 \, x^{5} + 109 \, x^{4} - 12 \, x^{3} + 54 \, x^{2} + 2 \, {\left (x^{8} - 2 \, x^{5} + 6 \, x^{4} + x^{2} - 6 \, x + 9\right )} e - 108 \, x + e^{2} + 81}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 35, normalized size = 1.46
method | result | size |
gosper | \(\frac {\left (\ln \relax (3)+i \pi \right ) x}{x^{8}-2 x^{5}+6 x^{4}+x^{2}+{\mathrm e}-6 x +9}\) | \(35\) |
norman | \(\frac {\left (\ln \relax (3)+i \pi \right ) x}{x^{8}-2 x^{5}+6 x^{4}+x^{2}+{\mathrm e}-6 x +9}\) | \(35\) |
risch | \(\frac {\left (\ln \relax (3)+i \pi \right ) x}{x^{8}-2 x^{5}+6 x^{4}+x^{2}+{\mathrm e}-6 x +9}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 33, normalized size = 1.38 \begin {gather*} \frac {{\left (i \, \pi + \log \relax (3)\right )} x}{x^{8} - 2 \, x^{5} + 6 \, x^{4} + x^{2} - 6 \, x + e + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 13.40, size = 34, normalized size = 1.42 \begin {gather*} \frac {x\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )}{x^8-2\,x^5+6\,x^4+x^2-6\,x+\mathrm {e}+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________