Optimal. Leaf size=29 \[ 4-2^{-2 x} e^{e^{-4+\frac {1}{3} \left (\frac {2}{x}-2 x\right )}} x \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {12, 2288} \begin {gather*} -2^{-2 x} e^{e^{\frac {2 \left (-x^2-6 x+1\right )}{3 x}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {2^{-2 x} e^{e^{\frac {2-12 x-2 x^2}{3 x}}} \left (-3 x+e^{\frac {2-12 x-2 x^2}{3 x}} \left (2+2 x^2\right )+6 x^2 \log (2)\right )}{x} \, dx\\ &=-2^{-2 x} e^{e^{\frac {2 \left (1-6 x-x^2\right )}{3 x}}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.45, size = 74, normalized size = 2.55 \begin {gather*} \frac {1}{3} \int \frac {2^{-2 x} e^{e^{\frac {2-12 x-2 x^2}{3 x}}} \left (-3 x+e^{\frac {2-12 x-2 x^2}{3 x}} \left (2+2 x^2\right )+6 x^2 \log (2)\right )}{x} \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 25, normalized size = 0.86 \begin {gather*} -\frac {x e^{\left (e^{\left (-\frac {2 \, {\left (x^{2} + 6 \, x - 1\right )}}{3 \, x}\right )}\right )}}{2^{2 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (6 \, x^{2} \log \relax (2) + 2 \, {\left (x^{2} + 1\right )} e^{\left (-\frac {2 \, {\left (x^{2} + 6 \, x - 1\right )}}{3 \, x}\right )} - 3 \, x\right )} e^{\left (e^{\left (-\frac {2 \, {\left (x^{2} + 6 \, x - 1\right )}}{3 \, x}\right )}\right )}}{3 \cdot 2^{2 \, x} x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.83
method | result | size |
risch | \(-x 2^{-2 x} {\mathrm e}^{{\mathrm e}^{-\frac {2 \left (x^{2}+6 x -1\right )}{3 x}}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{3} \, \int \frac {{\left (6 \, x^{2} \log \relax (2) + 2 \, {\left (x^{2} + 1\right )} e^{\left (-\frac {2 \, {\left (x^{2} + 6 \, x - 1\right )}}{3 \, x}\right )} - 3 \, x\right )} e^{\left (e^{\left (-\frac {2 \, {\left (x^{2} + 6 \, x - 1\right )}}{3 \, x}\right )}\right )}}{2^{2 \, x} x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 20, normalized size = 0.69 \begin {gather*} -{\left (\frac {1}{4}\right )}^x\,x\,{\mathrm {e}}^{{\mathrm {e}}^{-\frac {2\,x}{3}}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{\frac {2}{3\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 115.41, size = 29, normalized size = 1.00 \begin {gather*} - x e^{- 2 x \log {\relax (2 )}} e^{e^{\frac {- \frac {2 x^{2}}{3} - 4 x + \frac {2}{3}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________