Optimal. Leaf size=32 \[ e^{e^x x} \left (x-\frac {e^5 \log (x)}{-x+e^{2 x} x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x x} \left (e^5+x^2+e^x \left (x^3+x^4\right )+e^{2 x} \left (-e^5 x-2 x^3+e^x \left (-2 x^4-2 x^5\right )\right )+e^{4 x} \left (x^4+e^x \left (x^5+x^6\right )\right )+\left (-e^5+e^{5+x} \left (x+x^2\right )+e^{2 x} \left (e^5 \left (2 x+2 x^2\right )+e^{5+x} \left (-x^2-x^3\right )\right )\right ) \log (x)\right )}{x^2-2 e^{2 x} x^3+e^{4 x} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^x x} \left (-\left (\left (-1+e^{2 x} x\right ) \left (e^5+x^2-e^{2 x} x^3+e^x x^3 (1+x)-e^{3 x} x^4 (1+x)\right )\right )-e^5 \left (1-e^x x (1+x)-2 e^{2 x} x (1+x)+e^{3 x} x^2 (1+x)\right ) \log (x)\right )}{x^2 \left (1-e^{2 x} x\right )^2} \, dx\\ &=\int \left (e^{e^x x}+e^{x+e^x x} x (1+x)+\frac {e^{5+e^x x} (1+2 x) \log (x)}{x^2 \left (-1+e^{2 x} x\right )^2}-\frac {e^{5+e^x x} \left (1-2 \log (x)-2 x \log (x)+e^x x \log (x)+e^x x^2 \log (x)\right )}{x^2 \left (-1+e^{2 x} x\right )}\right ) \, dx\\ &=\int e^{e^x x} \, dx+\int e^{x+e^x x} x (1+x) \, dx+\int \frac {e^{5+e^x x} (1+2 x) \log (x)}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx-\int \frac {e^{5+e^x x} \left (1-2 \log (x)-2 x \log (x)+e^x x \log (x)+e^x x^2 \log (x)\right )}{x^2 \left (-1+e^{2 x} x\right )} \, dx\\ &=\log (x) \int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx+\int e^{e^x x} \, dx+\int \left (e^{x+e^x x} x+e^{x+e^x x} x^2\right ) \, dx-\int \frac {e^{5+e^x x} \left (-1-(1+x) \left (-2+e^x x\right ) \log (x)\right )}{x^2 \left (1-e^{2 x} x\right )} \, dx-\int \frac {\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx+2 \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx}{x} \, dx\\ &=\log (x) \int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx+\int e^{e^x x} \, dx+\int e^{x+e^x x} x \, dx+\int e^{x+e^x x} x^2 \, dx-\int \left (\frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )}+\frac {e^{5+x+e^x x} \log (x)}{-1+e^{2 x} x}-\frac {2 e^{5+e^x x} \log (x)}{x^2 \left (-1+e^{2 x} x\right )}-\frac {2 e^{5+e^x x} \log (x)}{x \left (-1+e^{2 x} x\right )}+\frac {e^{5+x+e^x x} \log (x)}{x \left (-1+e^{2 x} x\right )}\right ) \, dx-\int \left (\frac {\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx}{x}+\frac {2 \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx}{x}\right ) \, dx\\ &=2 \int \frac {e^{5+e^x x} \log (x)}{x^2 \left (-1+e^{2 x} x\right )} \, dx+2 \int \frac {e^{5+e^x x} \log (x)}{x \left (-1+e^{2 x} x\right )} \, dx-2 \int \frac {\int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx}{x} \, dx+\log (x) \int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx+\int e^{e^x x} \, dx+\int e^{x+e^x x} x \, dx+\int e^{x+e^x x} x^2 \, dx-\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )} \, dx-\int \frac {e^{5+x+e^x x} \log (x)}{-1+e^{2 x} x} \, dx-\int \frac {e^{5+x+e^x x} \log (x)}{x \left (-1+e^{2 x} x\right )} \, dx-\int \frac {\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx}{x} \, dx\\ &=-\left (2 \int \frac {\int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx}{x} \, dx\right )-2 \int \frac {\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )} \, dx}{x} \, dx-2 \int \frac {\int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )} \, dx}{x} \, dx+\log (x) \int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx-\log (x) \int \frac {e^{5+x+e^x x}}{-1+e^{2 x} x} \, dx-\log (x) \int \frac {e^{5+x+e^x x}}{x \left (-1+e^{2 x} x\right )} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )^2} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )} \, dx+(2 \log (x)) \int \frac {e^{5+e^x x}}{x \left (-1+e^{2 x} x\right )} \, dx+\int e^{e^x x} \, dx+\int e^{x+e^x x} x \, dx+\int e^{x+e^x x} x^2 \, dx-\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )} \, dx-\int \frac {\int \frac {e^{5+e^x x}}{x^2 \left (-1+e^{2 x} x\right )^2} \, dx}{x} \, dx+\int \frac {\int \frac {e^{5+x+e^x x}}{-1+e^{2 x} x} \, dx}{x} \, dx+\int \frac {\int \frac {e^{5+x+e^x x}}{x \left (-1+e^{2 x} x\right )} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 31, normalized size = 0.97 \begin {gather*} e^{e^x x} \left (x-\frac {e^5 \log (x)}{x \left (-1+e^{2 x} x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 48, normalized size = 1.50 \begin {gather*} \frac {{\left (x^{3} e^{\left (2 \, x + 10\right )} - x^{2} e^{10} - e^{15} \log \relax (x)\right )} e^{\left (x e^{x}\right )}}{x^{2} e^{\left (2 \, x + 10\right )} - x e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 50, normalized size = 1.56 \begin {gather*} \frac {x^{3} e^{\left (x e^{x} + 2 \, x\right )} - x^{2} e^{\left (x e^{x}\right )} - e^{\left (x e^{x} + 5\right )} \log \relax (x)}{x^{2} e^{\left (2 \, x\right )} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 39, normalized size = 1.22
method | result | size |
risch | \(-\frac {\left (-{\mathrm e}^{2 x} x^{3}+{\mathrm e}^{5} \ln \relax (x )+x^{2}\right ) {\mathrm e}^{{\mathrm e}^{x} x}}{x \left (x \,{\mathrm e}^{2 x}-1\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 40, normalized size = 1.25 \begin {gather*} \frac {{\left (x^{3} e^{\left (2 \, x\right )} - x^{2} - e^{5} \log \relax (x)\right )} e^{\left (x e^{x}\right )}}{x^{2} e^{\left (2 \, x\right )} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{x\,{\mathrm {e}}^x}\,\left ({\mathrm {e}}^5+{\mathrm {e}}^{4\,x}\,\left ({\mathrm {e}}^x\,\left (x^6+x^5\right )+x^4\right )+{\mathrm {e}}^x\,\left (x^4+x^3\right )-{\mathrm {e}}^{2\,x}\,\left ({\mathrm {e}}^x\,\left (2\,x^5+2\,x^4\right )+x\,{\mathrm {e}}^5+2\,x^3\right )+\ln \relax (x)\,\left ({\mathrm {e}}^{x+5}\,\left (x^2+x\right )-{\mathrm {e}}^5+{\mathrm {e}}^{2\,x}\,\left ({\mathrm {e}}^5\,\left (2\,x^2+2\,x\right )-{\mathrm {e}}^{x+5}\,\left (x^3+x^2\right )\right )\right )+x^2\right )}{x^4\,{\mathrm {e}}^{4\,x}-2\,x^3\,{\mathrm {e}}^{2\,x}+x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 34, normalized size = 1.06 \begin {gather*} \frac {\left (x^{3} e^{2 x} - x^{2} - e^{5} \log {\relax (x )}\right ) e^{x e^{x}}}{x^{2} e^{2 x} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________