Optimal. Leaf size=32 \[ e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \]
________________________________________________________________________________________
Rubi [F] time = 11.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}+x^3}{x}} \left (2 x^4 \log \left (\frac {e^{-x}}{x}\right )+\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (x \log \left (\frac {e^{-x}}{x}\right )+e^{-e^{15/x}} \log \left (\frac {e^{-x}}{x}\right ) \left (x+x^2-15 e^{15/x} \log \left (\frac {e^{-x}}{x}\right )\right )\right )\right )}{x^3 \log \left (\frac {e^{-x}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (2 x^4+e^{-e^{15/x}} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (x \left (1+e^{e^{15/x}}+x\right )-15 e^{15/x} \log \left (\frac {e^{-x}}{x}\right )\right )\right )}{x^3} \, dx\\ &=\int \left (2 e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x+\frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (x+e^{e^{15/x}} x+x^2-15 e^{15/x} \log \left (\frac {e^{-x}}{x}\right )\right )}{x^3}\right ) \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx+\int \frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (x+e^{e^{15/x}} x+x^2-15 e^{15/x} \log \left (\frac {e^{-x}}{x}\right )\right )}{x^3} \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx+\int \left (\frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (1+e^{e^{15/x}}+x\right )}{x^2}-\frac {15 e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \log \left (\frac {e^{-x}}{x}\right )}{x^3}\right ) \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx-15 \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \log \left (\frac {e^{-x}}{x}\right )}{x^3} \, dx+\int \frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} \left (1+e^{e^{15/x}}+x\right )}{x^2} \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx+15 \int \frac {(-1-x) \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx}{x} \, dx-\left (15 \log \left (\frac {e^{-x}}{x}\right )\right ) \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx+\int \left (\frac {e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2}+\frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} (1+x)}{x^2}\right ) \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx+15 \int \left (-\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx-\frac {\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx}{x}\right ) \, dx-\left (15 \log \left (\frac {e^{-x}}{x}\right )\right ) \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx+\int \frac {e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2} \, dx+\int \frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}} (1+x)}{x^2} \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx-15 \int \left (\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx\right ) \, dx-15 \int \frac {\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx}{x} \, dx-\left (15 \log \left (\frac {e^{-x}}{x}\right )\right ) \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx+\int \left (\frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2}+\frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}\right ) \, dx+\int \frac {e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2} \, dx\\ &=2 \int e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} x \, dx-15 \int \left (\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx\right ) \, dx-15 \int \frac {\int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx}{x} \, dx-\left (15 \log \left (\frac {e^{-x}}{x}\right )\right ) \int \frac {e^{-e^{15/x}+\frac {15}{x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^3} \, dx+\int \frac {e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2} \, dx+\int \frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x^2} \, dx+\int \frac {e^{-e^{15/x}-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 32, normalized size = 1.00 \begin {gather*} e^{-\frac {\left (\frac {e^{-x}}{x}\right )^{e^{-e^{15/x}}}}{x}+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 32, normalized size = 1.00 \begin {gather*} e^{\left (\frac {x^{3} - e^{\left (e^{\left (-e^{\frac {15}{x}} + \log \left (\log \left (\frac {e^{\left (-x\right )}}{x}\right )\right )\right )}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{4} \log \left (\frac {e^{\left (-x\right )}}{x}\right ) + {\left ({\left (x^{2} - 15 \, e^{\frac {15}{x}} \log \left (\frac {e^{\left (-x\right )}}{x}\right ) + x\right )} e^{\left (-e^{\frac {15}{x}} + \log \left (\log \left (\frac {e^{\left (-x\right )}}{x}\right )\right )\right )} + x \log \left (\frac {e^{\left (-x\right )}}{x}\right )\right )} e^{\left (e^{\left (-e^{\frac {15}{x}} + \log \left (\log \left (\frac {e^{\left (-x\right )}}{x}\right )\right )\right )}\right )}\right )} e^{\left (\frac {x^{3} - e^{\left (e^{\left (-e^{\frac {15}{x}} + \log \left (\log \left (\frac {e^{\left (-x\right )}}{x}\right )\right )\right )}\right )}}{x}\right )}}{x^{3} \log \left (\frac {e^{\left (-x\right )}}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 130, normalized size = 4.06
method | result | size |
risch | \({\mathrm e}^{\frac {-{\mathrm e}^{-\frac {\left (i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )+2 \ln \relax (x )+2 \ln \left ({\mathrm e}^{x}\right )\right ) {\mathrm e}^{-{\mathrm e}^{\frac {15}{x}}}}{2}}+x^{3}}{x}}\) | \(130\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 37, normalized size = 1.16 \begin {gather*} e^{\left (x^{2} - \frac {e^{\left (-x e^{\left (-e^{\frac {15}{x}}\right )} - e^{\left (-e^{\frac {15}{x}}\right )} \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.63, size = 37, normalized size = 1.16 \begin {gather*} {\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-x\,{\mathrm {e}}^{-{\mathrm {e}}^{15/x}}}\,{\left (\frac {1}{x}\right )}^{{\mathrm {e}}^{-{\mathrm {e}}^{15/x}}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________