Optimal. Leaf size=18 \[ x \log \left (-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 58, normalized size of antiderivative = 3.22, number of steps used = 10, number of rules used = 5, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6, 6688, 43, 2389, 2295} \begin {gather*} \frac {1}{26} \left (26 x+\frac {1725}{\left (3+e^4\right )^2}\right ) \log \left (-\frac {26 x}{69}-\frac {25}{\left (3+e^4\right )^2}\right )-\frac {1725 \log \left (26 \left (3+e^4\right )^2 x+1725\right )}{26 \left (3+e^4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 43
Rule 2295
Rule 2389
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {234 x+156 e^4 x+26 e^8 x+\left (1725+234 x+156 e^4 x+26 e^8 x\right ) \log \left (\frac {-1725-234 x-156 e^4 x-26 e^8 x}{621+414 e^4+69 e^8}\right )}{1725+26 e^8 x+\left (234+156 e^4\right ) x} \, dx\\ &=\int \frac {234 x+156 e^4 x+26 e^8 x+\left (1725+234 x+156 e^4 x+26 e^8 x\right ) \log \left (\frac {-1725-234 x-156 e^4 x-26 e^8 x}{621+414 e^4+69 e^8}\right )}{1725+\left (234+156 e^4+26 e^8\right ) x} \, dx\\ &=\int \frac {26 e^8 x+\left (234+156 e^4\right ) x+\left (1725+234 x+156 e^4 x+26 e^8 x\right ) \log \left (\frac {-1725-234 x-156 e^4 x-26 e^8 x}{621+414 e^4+69 e^8}\right )}{1725+\left (234+156 e^4+26 e^8\right ) x} \, dx\\ &=\int \frac {\left (234+156 e^4+26 e^8\right ) x+\left (1725+234 x+156 e^4 x+26 e^8 x\right ) \log \left (\frac {-1725-234 x-156 e^4 x-26 e^8 x}{621+414 e^4+69 e^8}\right )}{1725+\left (234+156 e^4+26 e^8\right ) x} \, dx\\ &=\int \left (\frac {26 \left (3+e^4\right )^2 x}{1725+26 \left (3+e^4\right )^2 x}+\log \left (-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right )\right ) \, dx\\ &=\left (26 \left (3+e^4\right )^2\right ) \int \frac {x}{1725+26 \left (3+e^4\right )^2 x} \, dx+\int \log \left (-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right ) \, dx\\ &=-\left (\frac {69}{26} \operatorname {Subst}\left (\int \log (x) \, dx,x,-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right )\right )+\left (26 \left (3+e^4\right )^2\right ) \int \left (\frac {1}{26 \left (3+e^4\right )^2}+\frac {1725}{26 \left (3+e^4\right )^2 \left (-1725-26 \left (3+e^4\right )^2 x\right )}\right ) \, dx\\ &=\frac {1}{26} \left (\frac {1725}{\left (3+e^4\right )^2}+26 x\right ) \log \left (-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right )-\frac {1725 \log \left (1725+26 \left (3+e^4\right )^2 x\right )}{26 \left (3+e^4\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 56, normalized size = 3.11 \begin {gather*} \frac {\left (1725+26 \left (3+e^4\right )^2 x\right ) \log \left (-\frac {25}{\left (3+e^4\right )^2}-\frac {26 x}{69}\right )-1725 \log \left (1725+26 \left (3+e^4\right )^2 x\right )}{26 \left (3+e^4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 30, normalized size = 1.67 \begin {gather*} x \log \left (-\frac {26 \, x e^{8} + 156 \, x e^{4} + 234 \, x + 1725}{69 \, {\left (e^{8} + 6 \, e^{4} + 9\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 30, normalized size = 1.67 \begin {gather*} x \log \left (-\frac {26 \, x e^{8} + 156 \, x e^{4} + 234 \, x + 1725}{69 \, {\left (e^{8} + 6 \, e^{4} + 9\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 32, normalized size = 1.78
method | result | size |
risch | \(x \ln \left (\frac {-26 x \,{\mathrm e}^{8}-156 x \,{\mathrm e}^{4}-234 x -1725}{69 \,{\mathrm e}^{8}+414 \,{\mathrm e}^{4}+621}\right )\) | \(32\) |
norman | \(x \ln \left (\frac {-26 x \,{\mathrm e}^{8}-156 x \,{\mathrm e}^{4}-234 x -1725}{69 \,{\mathrm e}^{8}+414 \,{\mathrm e}^{4}+621}\right )\) | \(36\) |
derivativedivides | \(-\frac {69 \,{\mathrm e}^{8} \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {69 \,{\mathrm e}^{8} \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {207 \,{\mathrm e}^{4} \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{13 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {207 \,{\mathrm e}^{4} \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{13 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {621 \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {621 \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {1725 \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}\) | \(353\) |
default | \(-\frac {69 \,{\mathrm e}^{8} \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {69 \,{\mathrm e}^{8} \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {207 \,{\mathrm e}^{4} \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{13 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {207 \,{\mathrm e}^{4} \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{13 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {621 \left (\left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right ) \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )+\frac {26 x}{69}+\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {621 \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}-\frac {1725 \ln \left (-\frac {26 x}{69}-\frac {25}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\right )}{26 \left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right )}\) | \(353\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 858, normalized size = 47.67 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 32, normalized size = 1.78 \begin {gather*} x\,\left (\ln \left (-234\,x-156\,x\,{\mathrm {e}}^4-26\,x\,{\mathrm {e}}^8-1725\right )-\ln \left (414\,{\mathrm {e}}^4+69\,{\mathrm {e}}^8+621\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 34, normalized size = 1.89 \begin {gather*} x \log {\left (\frac {- 26 x e^{8} - 156 x e^{4} - 234 x - 1725}{621 + 414 e^{4} + 69 e^{8}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________