Optimal. Leaf size=25 \[ \left (e^{\frac {x^2 (x+\log (4))}{5+e^4+\log (x)}}-x\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 2.98, antiderivative size = 99, normalized size of antiderivative = 3.96, number of steps used = 6, number of rules used = 4, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6, 6741, 6742, 2288} \begin {gather*} -x^2-\frac {4^{\frac {x^2}{\log (x)+e^4+5}} e^{\frac {x^3}{\log (x)+e^4+5}} \left (x^2 \log (16) \log (x)+\left (9+2 e^4\right ) x^2 \log (4)\right )}{\log (4) \left (\log (x)+e^4+5\right )^2 \left (\frac {x}{\left (\log (x)+e^4+5\right )^2}-\frac {2 x}{\log (x)+e^4+5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 e^8 x+\left (-50-20 e^4\right ) x+\left (-20 x-4 e^4 x\right ) \log (x)-2 x \log ^2(x)+e^{\frac {x^3+x^2 \log (4)}{5+e^4+\log (x)}} \left (25+e^8+14 x^3+e^4 \left (10+3 x^3\right )+\left (9 x^2+2 e^4 x^2\right ) \log (4)+\left (10+2 e^4+3 x^3+2 x^2 \log (4)\right ) \log (x)+\log ^2(x)\right )}{25+10 e^4+e^8+\left (10+2 e^4\right ) \log (x)+\log ^2(x)} \, dx\\ &=\int \frac {\left (-50-20 e^4-2 e^8\right ) x+\left (-20 x-4 e^4 x\right ) \log (x)-2 x \log ^2(x)+e^{\frac {x^3+x^2 \log (4)}{5+e^4+\log (x)}} \left (25+e^8+14 x^3+e^4 \left (10+3 x^3\right )+\left (9 x^2+2 e^4 x^2\right ) \log (4)+\left (10+2 e^4+3 x^3+2 x^2 \log (4)\right ) \log (x)+\log ^2(x)\right )}{25+10 e^4+e^8+\left (10+2 e^4\right ) \log (x)+\log ^2(x)} \, dx\\ &=\int \frac {\left (-50-20 e^4-2 e^8\right ) x+\left (-20 x-4 e^4 x\right ) \log (x)-2 x \log ^2(x)+e^{\frac {x^3+x^2 \log (4)}{5+e^4+\log (x)}} \left (25+e^8+14 x^3+e^4 \left (10+3 x^3\right )+\left (9 x^2+2 e^4 x^2\right ) \log (4)+\left (10+2 e^4+3 x^3+2 x^2 \log (4)\right ) \log (x)+\log ^2(x)\right )}{\left (5 \left (1+\frac {e^4}{5}\right )+\log (x)\right )^2} \, dx\\ &=\int \left (-2 x+\frac {4^{\frac {x^2}{5 \left (1+\frac {e^4}{5}\right )+\log (x)}} e^{\frac {x^3}{5 \left (1+\frac {e^4}{5}\right )+\log (x)}} \left (25 \left (1+\frac {1}{25} e^4 \left (10+e^4\right )\right )+14 \left (1+\frac {3 e^4}{14}\right ) x^3+9 x^2 \log (4) \left (1+\frac {e^4 \log (16)}{9 \log (4)}\right )+10 \left (1+\frac {e^4}{5}\right ) \log (x)+3 x^3 \log (x)+x^2 \log (16) \log (x)+\log ^2(x)\right )}{\left (5 \left (1+\frac {e^4}{5}\right )+\log (x)\right )^2}\right ) \, dx\\ &=-x^2+\int \frac {4^{\frac {x^2}{5 \left (1+\frac {e^4}{5}\right )+\log (x)}} e^{\frac {x^3}{5 \left (1+\frac {e^4}{5}\right )+\log (x)}} \left (25 \left (1+\frac {1}{25} e^4 \left (10+e^4\right )\right )+14 \left (1+\frac {3 e^4}{14}\right ) x^3+9 x^2 \log (4) \left (1+\frac {e^4 \log (16)}{9 \log (4)}\right )+10 \left (1+\frac {e^4}{5}\right ) \log (x)+3 x^3 \log (x)+x^2 \log (16) \log (x)+\log ^2(x)\right )}{\left (5 \left (1+\frac {e^4}{5}\right )+\log (x)\right )^2} \, dx\\ &=-x^2-\frac {4^{\frac {x^2}{5+e^4+\log (x)}} e^{\frac {x^3}{5+e^4+\log (x)}} \left (x^2 \left (9 \log (4)+e^4 \log (16)\right )+x^2 \log (16) \log (x)\right )}{\log (4) \left (5+e^4+\log (x)\right )^2 \left (\frac {x}{\left (5+e^4+\log (x)\right )^2}-\frac {2 x}{5+e^4+\log (x)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.57, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-50 x-20 e^4 x-2 e^8 x+\left (-20 x-4 e^4 x\right ) \log (x)-2 x \log ^2(x)+e^{\frac {x^3+x^2 \log (4)}{5+e^4+\log (x)}} \left (25+e^8+14 x^3+e^4 \left (10+3 x^3\right )+\left (9 x^2+2 e^4 x^2\right ) \log (4)+\left (10+2 e^4+3 x^3+2 x^2 \log (4)\right ) \log (x)+\log ^2(x)\right )}{25+10 e^4+e^8+\left (10+2 e^4\right ) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 29, normalized size = 1.16 \begin {gather*} -x^{2} + x e^{\left (\frac {x^{3} + 2 \, x^{2} \log \relax (2)}{e^{4} + \log \relax (x) + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.06, size = 29, normalized size = 1.16 \begin {gather*} -x^{2} + x e^{\left (\frac {x^{3} + 2 \, x^{2} \log \relax (2)}{e^{4} + \log \relax (x) + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 28, normalized size = 1.12
method | result | size |
risch | \(-x^{2}+x \,{\mathrm e}^{\frac {\left (x +2 \ln \relax (2)\right ) x^{2}}{\ln \relax (x )+5+{\mathrm e}^{4}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {50\,x+2\,x\,{\ln \relax (x)}^2+20\,x\,{\mathrm {e}}^4+2\,x\,{\mathrm {e}}^8+\ln \relax (x)\,\left (20\,x+4\,x\,{\mathrm {e}}^4\right )-{\mathrm {e}}^{\frac {x^3+2\,\ln \relax (2)\,x^2}{{\mathrm {e}}^4+\ln \relax (x)+5}}\,\left ({\mathrm {e}}^8+\ln \relax (x)\,\left (3\,x^3+4\,\ln \relax (2)\,x^2+2\,{\mathrm {e}}^4+10\right )+{\ln \relax (x)}^2+{\mathrm {e}}^4\,\left (3\,x^3+10\right )+14\,x^3+2\,\ln \relax (2)\,\left (2\,x^2\,{\mathrm {e}}^4+9\,x^2\right )+25\right )}{{\ln \relax (x)}^2+\left (2\,{\mathrm {e}}^4+10\right )\,\ln \relax (x)+10\,{\mathrm {e}}^4+{\mathrm {e}}^8+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.09, size = 26, normalized size = 1.04 \begin {gather*} - x^{2} + x e^{\frac {x^{3} + 2 x^{2} \log {\relax (2 )}}{\log {\relax (x )} + 5 + e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________