Optimal. Leaf size=38 \[ x+\frac {x^2}{3 \left (\frac {5}{-4+x}+e^{x^2} \log \left (5 \log \left (\frac {4}{3-x}\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 46.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x^2} \left (16 x^2-8 x^3+x^4\right )+\left (-225+195 x-85 x^2+15 x^3\right ) \log \left (-\frac {4}{-3+x}\right )+e^{x^2} \left (360-306 x+110 x^2+74 x^3-78 x^4+22 x^5-2 x^6\right ) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{2 x^2} \left (-144+120 x-33 x^2+3 x^3\right ) \log \left (-\frac {4}{-3+x}\right ) \log ^2\left (5 \log \left (-\frac {4}{-3+x}\right )\right )}{(-225+75 x) \log \left (-\frac {4}{-3+x}\right )+e^{x^2} \left (360-210 x+30 x^2\right ) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{2 x^2} \left (-144+120 x-33 x^2+3 x^3\right ) \log \left (-\frac {4}{-3+x}\right ) \log ^2\left (5 \log \left (-\frac {4}{-3+x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{x^2} (-4+x)^2 x^2+(-3+x) \log \left (-\frac {4}{-3+x}\right ) \left (-5 \left (15-8 x+3 x^2\right )+2 e^{x^2} \left (60-31 x+8 x^2+15 x^3-8 x^4+x^5\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-3 e^{2 x^2} (-4+x)^2 \log ^2\left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{3 (3-x) \log \left (-\frac {4}{-3+x}\right ) \left (5+e^{x^2} (-4+x) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-e^{x^2} (-4+x)^2 x^2+(-3+x) \log \left (-\frac {4}{-3+x}\right ) \left (-5 \left (15-8 x+3 x^2\right )+2 e^{x^2} \left (60-31 x+8 x^2+15 x^3-8 x^4+x^5\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-3 e^{2 x^2} (-4+x)^2 \log ^2\left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(3-x) \log \left (-\frac {4}{-3+x}\right ) \left (5+e^{x^2} (-4+x) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \left (3+\frac {5 x^2 \left (4-x-3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+25 x \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-14 x^2 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+2 x^3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(-3+x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5-4 e^{x^2} \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{x^2} x \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )^2}-\frac {(-4+x) x \left (-x+6 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-2 x \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-6 x^2 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+2 x^3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(-3+x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5-4 e^{x^2} \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{x^2} x \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}\right ) \, dx\\ &=x-\frac {1}{3} \int \frac {(-4+x) x \left (-x+6 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-2 x \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-6 x^2 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+2 x^3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(-3+x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5-4 e^{x^2} \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{x^2} x \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )} \, dx+\frac {5}{3} \int \frac {x^2 \left (4-x-3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+25 x \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )-14 x^2 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+2 x^3 \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(-3+x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5-4 e^{x^2} \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )+e^{x^2} x \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )^2} \, dx\\ &=x-\frac {1}{3} \int \frac {(4-x) x \left (-x+2 \left (3-x-3 x^2+x^3\right ) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(3-x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5+e^{x^2} (-4+x) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )} \, dx+\frac {5}{3} \int \frac {x^2 \left (-4+x-\left (-3+25 x-14 x^2+2 x^3\right ) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )}{(3-x) \log \left (-\frac {4}{-3+x}\right ) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right ) \left (5+e^{x^2} (-4+x) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 41, normalized size = 1.08 \begin {gather*} \frac {1}{3} \left (3 (-3+x)+\frac {(-4+x) x^2}{5+e^{x^2} (-4+x) \log \left (5 \log \left (-\frac {4}{-3+x}\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 61, normalized size = 1.61 \begin {gather*} \frac {x^{3} + 3 \, {\left (x^{2} - 4 \, x\right )} e^{\left (x^{2}\right )} \log \left (5 \, \log \left (-\frac {4}{x - 3}\right )\right ) - 4 \, x^{2} + 15 \, x}{3 \, {\left ({\left (x - 4\right )} e^{\left (x^{2}\right )} \log \left (5 \, \log \left (-\frac {4}{x - 3}\right )\right ) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 111, normalized size = 2.92
method | result | size |
risch | \(x +\frac {\left (x -4\right ) x^{2}}{3 x \,{\mathrm e}^{x^{2}} \ln \left (10 \ln \relax (2)+5 i \pi -5 \ln \left (x -3\right )+5 i \pi \mathrm {csgn}\left (\frac {i}{x -3}\right )^{2} \left (\mathrm {csgn}\left (\frac {i}{x -3}\right )-1\right )\right )-12 \,{\mathrm e}^{x^{2}} \ln \left (10 \ln \relax (2)+5 i \pi -5 \ln \left (x -3\right )+5 i \pi \mathrm {csgn}\left (\frac {i}{x -3}\right )^{2} \left (\mathrm {csgn}\left (\frac {i}{x -3}\right )-1\right )\right )+15}\) | \(111\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.68, size = 112, normalized size = 2.95 \begin {gather*} \frac {x^{3} + 3 \, {\left (x^{2} - 4 \, x\right )} e^{\left (x^{2}\right )} \log \left (-2 \, \log \relax (2) + \log \left (-x + 3\right )\right ) - 4 \, x^{2} - 3 \, {\left ({\left (-i \, \pi - \log \relax (5)\right )} x^{2} + 4 \, {\left (i \, \pi + \log \relax (5)\right )} x\right )} e^{\left (x^{2}\right )} + 15 \, x}{3 \, {\left ({\left (x - 4\right )} e^{\left (x^{2}\right )} \log \left (-2 \, \log \relax (2) + \log \left (-x + 3\right )\right ) + {\left (-4 i \, \pi + {\left (i \, \pi + \log \relax (5)\right )} x - 4 \, \log \relax (5)\right )} e^{\left (x^{2}\right )} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (-\frac {4}{x-3}\right )\,{\mathrm {e}}^{2\,x^2}\,\left (3\,x^3-33\,x^2+120\,x-144\right )\,{\ln \left (5\,\ln \left (-\frac {4}{x-3}\right )\right )}^2+\ln \left (-\frac {4}{x-3}\right )\,{\mathrm {e}}^{x^2}\,\left (-2\,x^6+22\,x^5-78\,x^4+74\,x^3+110\,x^2-306\,x+360\right )\,\ln \left (5\,\ln \left (-\frac {4}{x-3}\right )\right )+\ln \left (-\frac {4}{x-3}\right )\,\left (15\,x^3-85\,x^2+195\,x-225\right )+{\mathrm {e}}^{x^2}\,\left (x^4-8\,x^3+16\,x^2\right )}{\ln \left (-\frac {4}{x-3}\right )\,{\mathrm {e}}^{2\,x^2}\,\left (3\,x^3-33\,x^2+120\,x-144\right )\,{\ln \left (5\,\ln \left (-\frac {4}{x-3}\right )\right )}^2+\ln \left (-\frac {4}{x-3}\right )\,{\mathrm {e}}^{x^2}\,\left (30\,x^2-210\,x+360\right )\,\ln \left (5\,\ln \left (-\frac {4}{x-3}\right )\right )+\ln \left (-\frac {4}{x-3}\right )\,\left (75\,x-225\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.06, size = 44, normalized size = 1.16 \begin {gather*} x + \frac {x^{3} - 4 x^{2}}{\left (3 x \log {\left (5 \log {\left (- \frac {4}{x - 3} \right )} \right )} - 12 \log {\left (5 \log {\left (- \frac {4}{x - 3} \right )} \right )}\right ) e^{x^{2}} + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________