Optimal. Leaf size=24 \[ 4+e^{-1-\frac {1}{10 \left (-5+(4+2 x)^2\right )}} \log (2) \]
________________________________________________________________________________________
Rubi [F] time = 1.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} (8+4 x) \log (2)}{605+1760 x+1720 x^2+640 x^3+80 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (2) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} (8+4 x)}{605+1760 x+1720 x^2+640 x^3+80 x^4} \, dx\\ &=\log (2) \int \frac {4 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} (2+x)}{5 \left (11+16 x+4 x^2\right )^2} \, dx\\ &=\frac {1}{5} (4 \log (2)) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} (2+x)}{\left (11+16 x+4 x^2\right )^2} \, dx\\ &=\frac {1}{5} (4 \log (2)) \int \left (\frac {2 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (11+16 x+4 x^2\right )^2}+\frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} x}{\left (11+16 x+4 x^2\right )^2}\right ) \, dx\\ &=\frac {1}{5} (4 \log (2)) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}} x}{\left (11+16 x+4 x^2\right )^2} \, dx+\frac {1}{5} (8 \log (2)) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (11+16 x+4 x^2\right )^2} \, dx\\ &=\frac {1}{5} (4 \log (2)) \int \left (\frac {\left (-16+4 \sqrt {5}\right ) e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{10 \left (-16+4 \sqrt {5}-8 x\right )^2}-\frac {2 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \sqrt {5} \left (-16+4 \sqrt {5}-8 x\right )}+\frac {\left (-16-4 \sqrt {5}\right ) e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{10 \left (16+4 \sqrt {5}+8 x\right )^2}-\frac {2 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \sqrt {5} \left (16+4 \sqrt {5}+8 x\right )}\right ) \, dx+\frac {1}{5} (8 \log (2)) \int \left (\frac {4 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \left (-16+4 \sqrt {5}-8 x\right )^2}+\frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \sqrt {5} \left (-16+4 \sqrt {5}-8 x\right )}+\frac {4 e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \left (16+4 \sqrt {5}+8 x\right )^2}+\frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{5 \sqrt {5} \left (16+4 \sqrt {5}+8 x\right )}\right ) \, dx\\ &=\frac {1}{25} (32 \log (2)) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (-16+4 \sqrt {5}-8 x\right )^2} \, dx+\frac {1}{25} (32 \log (2)) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (16+4 \sqrt {5}+8 x\right )^2} \, dx-\frac {1}{25} \left (8 \left (4-\sqrt {5}\right ) \log (2)\right ) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (-16+4 \sqrt {5}-8 x\right )^2} \, dx-\frac {1}{25} \left (8 \left (4+\sqrt {5}\right ) \log (2)\right ) \int \frac {e^{-\frac {111+160 x+40 x^2}{110+160 x+40 x^2}}}{\left (16+4 \sqrt {5}+8 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 21, normalized size = 0.88 \begin {gather*} e^{-1-\frac {1}{110+160 x+40 x^2}} \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (-\frac {40 \, x^{2} + 160 \, x + 111}{10 \, {\left (4 \, x^{2} + 16 \, x + 11\right )}}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 51, normalized size = 2.12 \begin {gather*} e^{\left (-\frac {4 \, x^{2}}{4 \, x^{2} + 16 \, x + 11} - \frac {16 \, x}{4 \, x^{2} + 16 \, x + 11} - \frac {111}{10 \, {\left (4 \, x^{2} + 16 \, x + 11\right )}}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 21, normalized size = 0.88
method | result | size |
default | \(\ln \relax (2) {\mathrm e}^{-\frac {1}{40 x^{2}+160 x +110}-1}\) | \(21\) |
risch | \(\ln \relax (2) {\mathrm e}^{-\frac {40 x^{2}+160 x +111}{10 \left (4 x^{2}+16 x +11\right )}}\) | \(29\) |
gosper | \(\ln \relax (2) {\mathrm e}^{-\frac {40 x^{2}+160 x +111}{10 \left (4 x^{2}+16 x +11\right )}}\) | \(31\) |
norman | \(\frac {\left (16 x \ln \relax (2)+4 x^{2} \ln \relax (2)+11 \ln \relax (2)\right ) {\mathrm e}^{-\frac {40 x^{2}+160 x +111}{40 x^{2}+160 x +110}}}{4 x^{2}+16 x +11}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 20, normalized size = 0.83 \begin {gather*} e^{\left (-\frac {1}{10 \, {\left (4 \, x^{2} + 16 \, x + 11\right )}} - 1\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 52, normalized size = 2.17 \begin {gather*} {\mathrm {e}}^{-\frac {16\,x}{4\,x^2+16\,x+11}}\,{\mathrm {e}}^{-\frac {4\,x^2}{4\,x^2+16\,x+11}}\,{\mathrm {e}}^{-\frac {111}{40\,x^2+160\,x+110}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 24, normalized size = 1.00 \begin {gather*} e^{- \frac {40 x^{2} + 160 x + 111}{40 x^{2} + 160 x + 110}} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________