Optimal. Leaf size=26 \[ \frac {-1+\left (-4+2 e^{\frac {3 x}{2-5 x}}+x\right )^4}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 23.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1020+6124 x-11879 x^2+8384 x^3-2724 x^4+420 x^5-25 x^6+e^{-\frac {12 x}{-2+5 x}} \left (-64+320 x-400 x^2\right )+e^{-\frac {9 x}{-2+5 x}} \left (512-2688 x+3840 x^2-800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (-1536+8448 x-13536 x^2+5280 x^3-600 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (2048-11776 x+20864 x^2-11552 x^3+2560 x^4-200 x^5\right )+\left (-1024 x+384 e^{-\frac {12 x}{-2+5 x}} x+5888 x^2-10432 x^3+5776 x^4-1280 x^5+100 x^6+e^{-\frac {9 x}{-2+5 x}} \left (-2176 x-64 x^2+800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (3840 x+1728 x^2-5472 x^3+1200 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (-1536 x-6144 x^2+12960 x^3-5232 x^4+600 x^5\right )\right ) \log (x)}{\left (4 x-20 x^2+25 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1020+6124 x-11879 x^2+8384 x^3-2724 x^4+420 x^5-25 x^6+e^{-\frac {12 x}{-2+5 x}} \left (-64+320 x-400 x^2\right )+e^{-\frac {9 x}{-2+5 x}} \left (512-2688 x+3840 x^2-800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (-1536+8448 x-13536 x^2+5280 x^3-600 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (2048-11776 x+20864 x^2-11552 x^3+2560 x^4-200 x^5\right )+\left (-1024 x+384 e^{-\frac {12 x}{-2+5 x}} x+5888 x^2-10432 x^3+5776 x^4-1280 x^5+100 x^6+e^{-\frac {9 x}{-2+5 x}} \left (-2176 x-64 x^2+800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (3840 x+1728 x^2-5472 x^3+1200 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (-1536 x-6144 x^2+12960 x^3-5232 x^4+600 x^5\right )\right ) \log (x)}{x \left (4-20 x+25 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {-1020+6124 x-11879 x^2+8384 x^3-2724 x^4+420 x^5-25 x^6+e^{-\frac {12 x}{-2+5 x}} \left (-64+320 x-400 x^2\right )+e^{-\frac {9 x}{-2+5 x}} \left (512-2688 x+3840 x^2-800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (-1536+8448 x-13536 x^2+5280 x^3-600 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (2048-11776 x+20864 x^2-11552 x^3+2560 x^4-200 x^5\right )+\left (-1024 x+384 e^{-\frac {12 x}{-2+5 x}} x+5888 x^2-10432 x^3+5776 x^4-1280 x^5+100 x^6+e^{-\frac {9 x}{-2+5 x}} \left (-2176 x-64 x^2+800 x^3\right )+e^{-\frac {6 x}{-2+5 x}} \left (3840 x+1728 x^2-5472 x^3+1200 x^4\right )+e^{-\frac {3 x}{-2+5 x}} \left (-1536 x-6144 x^2+12960 x^3-5232 x^4+600 x^5\right )\right ) \log (x)}{x (-2+5 x)^2 \log ^2(x)} \, dx\\ &=\int \frac {-1020-16 e^{\frac {12 x}{2-5 x}} (2-5 x)^2-32 e^{\frac {9 x}{2-5 x}} (2-5 x)^2 (-4+x)-8 e^{\frac {3 x}{2-5 x}} (2-5 x)^2 (-4+x)^3+6124 x-11879 x^2+8384 x^3-2724 x^4+420 x^5-25 x^6-24 e^{\frac {6 x}{2-5 x}} \left (8-22 x+5 x^2\right )^2+4 \left (12 e^{\frac {3 x}{2-5 x}}+(2-5 x)^2\right ) x \left (-4+2 e^{\frac {3 x}{2-5 x}}+x\right )^3 \log (x)}{(2-5 x)^2 x \log ^2(x)} \, dx\\ &=\int \left (\frac {6124}{(-2+5 x)^2 \log ^2(x)}-\frac {1020}{x (-2+5 x)^2 \log ^2(x)}-\frac {11879 x}{(-2+5 x)^2 \log ^2(x)}+\frac {8384 x^2}{(-2+5 x)^2 \log ^2(x)}-\frac {2724 x^3}{(-2+5 x)^2 \log ^2(x)}+\frac {420 x^4}{(-2+5 x)^2 \log ^2(x)}-\frac {25 x^5}{(-2+5 x)^2 \log ^2(x)}-\frac {256}{\log (x)}+\frac {192 x}{\log (x)}-\frac {48 x^2}{\log (x)}+\frac {4 x^3}{\log (x)}-\frac {16 e^{\frac {12 x}{2-5 x}} \left (4-20 x+25 x^2-24 x \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)}+\frac {32 e^{\frac {9 x}{2-5 x}} \left (16-84 x+120 x^2-25 x^3-68 x \log (x)-2 x^2 \log (x)+25 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)}+\frac {24 e^{\frac {6 x}{2-5 x}} (-4+x) \left (16-84 x+120 x^2-25 x^3-40 x \log (x)-28 x^2 \log (x)+50 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)}+\frac {8 e^{\frac {3 x}{2-5 x}} (-4+x)^2 \left (16-84 x+120 x^2-25 x^3-12 x \log (x)-54 x^2 \log (x)+75 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)}\right ) \, dx\\ &=4 \int \frac {x^3}{\log (x)} \, dx+8 \int \frac {e^{\frac {3 x}{2-5 x}} (-4+x)^2 \left (16-84 x+120 x^2-25 x^3-12 x \log (x)-54 x^2 \log (x)+75 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)} \, dx-16 \int \frac {e^{\frac {12 x}{2-5 x}} \left (4-20 x+25 x^2-24 x \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)} \, dx+24 \int \frac {e^{\frac {6 x}{2-5 x}} (-4+x) \left (16-84 x+120 x^2-25 x^3-40 x \log (x)-28 x^2 \log (x)+50 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)} \, dx-25 \int \frac {x^5}{(-2+5 x)^2 \log ^2(x)} \, dx+32 \int \frac {e^{\frac {9 x}{2-5 x}} \left (16-84 x+120 x^2-25 x^3-68 x \log (x)-2 x^2 \log (x)+25 x^3 \log (x)\right )}{x (-2+5 x)^2 \log ^2(x)} \, dx-48 \int \frac {x^2}{\log (x)} \, dx+192 \int \frac {x}{\log (x)} \, dx-256 \int \frac {1}{\log (x)} \, dx+420 \int \frac {x^4}{(-2+5 x)^2 \log ^2(x)} \, dx-1020 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-2724 \int \frac {x^3}{(-2+5 x)^2 \log ^2(x)} \, dx+6124 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx+8384 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx-11879 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=\frac {32 e^{\frac {12 x}{2-5 x}}}{(2-5 x)^2 \left (\frac {1}{2-5 x}+\frac {5 x}{(2-5 x)^2}\right ) \log (x)}-256 \text {li}(x)+4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )+8 \int \left (-\frac {e^{\frac {3 x}{2-5 x}} (-4+x)^3}{x \log ^2(x)}+\frac {3 e^{\frac {3 x}{2-5 x}} (-4+x)^2 \left (-4-18 x+25 x^2\right )}{(-2+5 x)^2 \log (x)}\right ) \, dx+24 \int \left (-\frac {e^{\frac {6 x}{2-5 x}} (-4+x)^2}{x \log ^2(x)}+\frac {2 e^{\frac {6 x}{2-5 x}} \left (80+36 x-114 x^2+25 x^3\right )}{(-2+5 x)^2 \log (x)}\right ) \, dx-25 \int \frac {x^5}{(-2+5 x)^2 \log ^2(x)} \, dx+32 \int \left (\frac {e^{\frac {9 x}{2-5 x}} (4-x)}{x \log ^2(x)}+\frac {e^{\frac {9 x}{2-5 x}} \left (-68-2 x+25 x^2\right )}{(-2+5 x)^2 \log (x)}\right ) \, dx-48 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+192 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+420 \int \frac {x^4}{(-2+5 x)^2 \log ^2(x)} \, dx-1020 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-2724 \int \frac {x^3}{(-2+5 x)^2 \log ^2(x)} \, dx+6124 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx+8384 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx-11879 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=192 \text {Ei}(2 \log (x))-48 \text {Ei}(3 \log (x))+4 \text {Ei}(4 \log (x))+\frac {32 e^{\frac {12 x}{2-5 x}}}{(2-5 x)^2 \left (\frac {1}{2-5 x}+\frac {5 x}{(2-5 x)^2}\right ) \log (x)}-256 \text {li}(x)-8 \int \frac {e^{\frac {3 x}{2-5 x}} (-4+x)^3}{x \log ^2(x)} \, dx-24 \int \frac {e^{\frac {6 x}{2-5 x}} (-4+x)^2}{x \log ^2(x)} \, dx+24 \int \frac {e^{\frac {3 x}{2-5 x}} (-4+x)^2 \left (-4-18 x+25 x^2\right )}{(-2+5 x)^2 \log (x)} \, dx-25 \int \frac {x^5}{(-2+5 x)^2 \log ^2(x)} \, dx+32 \int \frac {e^{\frac {9 x}{2-5 x}} (4-x)}{x \log ^2(x)} \, dx+32 \int \frac {e^{\frac {9 x}{2-5 x}} \left (-68-2 x+25 x^2\right )}{(-2+5 x)^2 \log (x)} \, dx+48 \int \frac {e^{\frac {6 x}{2-5 x}} \left (80+36 x-114 x^2+25 x^3\right )}{(-2+5 x)^2 \log (x)} \, dx+420 \int \frac {x^4}{(-2+5 x)^2 \log ^2(x)} \, dx-1020 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-2724 \int \frac {x^3}{(-2+5 x)^2 \log ^2(x)} \, dx+6124 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx+8384 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx-11879 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=192 \text {Ei}(2 \log (x))-48 \text {Ei}(3 \log (x))+4 \text {Ei}(4 \log (x))+\frac {32 e^{\frac {12 x}{2-5 x}}}{(2-5 x)^2 \left (\frac {1}{2-5 x}+\frac {5 x}{(2-5 x)^2}\right ) \log (x)}-256 \text {li}(x)-8 \int \left (\frac {48 e^{\frac {3 x}{2-5 x}}}{\log ^2(x)}-\frac {64 e^{\frac {3 x}{2-5 x}}}{x \log ^2(x)}-\frac {12 e^{\frac {3 x}{2-5 x}} x}{\log ^2(x)}+\frac {e^{\frac {3 x}{2-5 x}} x^2}{\log ^2(x)}\right ) \, dx-24 \int \left (-\frac {8 e^{\frac {6 x}{2-5 x}}}{\log ^2(x)}+\frac {16 e^{\frac {6 x}{2-5 x}}}{x \log ^2(x)}+\frac {e^{\frac {6 x}{2-5 x}} x}{\log ^2(x)}\right ) \, dx+24 \int \left (\frac {1888 e^{\frac {3 x}{2-5 x}}}{125 \log (x)}-\frac {198 e^{\frac {3 x}{2-5 x}} x}{25 \log (x)}+\frac {e^{\frac {3 x}{2-5 x}} x^2}{\log (x)}-\frac {11664 e^{\frac {3 x}{2-5 x}}}{125 (-2+5 x)^2 \log (x)}+\frac {1944 e^{\frac {3 x}{2-5 x}}}{125 (-2+5 x) \log (x)}\right ) \, dx-25 \int \frac {x^5}{(-2+5 x)^2 \log ^2(x)} \, dx+32 \int \left (-\frac {e^{\frac {9 x}{2-5 x}}}{\log ^2(x)}+\frac {4 e^{\frac {9 x}{2-5 x}}}{x \log ^2(x)}\right ) \, dx+32 \int \left (\frac {e^{\frac {9 x}{2-5 x}}}{\log (x)}-\frac {324 e^{\frac {9 x}{2-5 x}}}{5 (-2+5 x)^2 \log (x)}+\frac {18 e^{\frac {9 x}{2-5 x}}}{5 (-2+5 x) \log (x)}\right ) \, dx+48 \int \left (-\frac {94 e^{\frac {6 x}{2-5 x}}}{25 \log (x)}+\frac {e^{\frac {6 x}{2-5 x}} x}{\log (x)}+\frac {1944 e^{\frac {6 x}{2-5 x}}}{25 (-2+5 x)^2 \log (x)}-\frac {216 e^{\frac {6 x}{2-5 x}}}{25 (-2+5 x) \log (x)}\right ) \, dx+420 \int \frac {x^4}{(-2+5 x)^2 \log ^2(x)} \, dx-1020 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-2724 \int \frac {x^3}{(-2+5 x)^2 \log ^2(x)} \, dx+6124 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx+8384 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx-11879 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=192 \text {Ei}(2 \log (x))-48 \text {Ei}(3 \log (x))+4 \text {Ei}(4 \log (x))+\frac {32 e^{\frac {12 x}{2-5 x}}}{(2-5 x)^2 \left (\frac {1}{2-5 x}+\frac {5 x}{(2-5 x)^2}\right ) \log (x)}-256 \text {li}(x)-8 \int \frac {e^{\frac {3 x}{2-5 x}} x^2}{\log ^2(x)} \, dx-24 \int \frac {e^{\frac {6 x}{2-5 x}} x}{\log ^2(x)} \, dx+24 \int \frac {e^{\frac {3 x}{2-5 x}} x^2}{\log (x)} \, dx-25 \int \frac {x^5}{(-2+5 x)^2 \log ^2(x)} \, dx-32 \int \frac {e^{\frac {9 x}{2-5 x}}}{\log ^2(x)} \, dx+32 \int \frac {e^{\frac {9 x}{2-5 x}}}{\log (x)} \, dx+48 \int \frac {e^{\frac {6 x}{2-5 x}} x}{\log (x)} \, dx+96 \int \frac {e^{\frac {3 x}{2-5 x}} x}{\log ^2(x)} \, dx+\frac {576}{5} \int \frac {e^{\frac {9 x}{2-5 x}}}{(-2+5 x) \log (x)} \, dx+128 \int \frac {e^{\frac {9 x}{2-5 x}}}{x \log ^2(x)} \, dx-\frac {4512}{25} \int \frac {e^{\frac {6 x}{2-5 x}}}{\log (x)} \, dx-\frac {4752}{25} \int \frac {e^{\frac {3 x}{2-5 x}} x}{\log (x)} \, dx+192 \int \frac {e^{\frac {6 x}{2-5 x}}}{\log ^2(x)} \, dx+\frac {45312}{125} \int \frac {e^{\frac {3 x}{2-5 x}}}{\log (x)} \, dx+\frac {46656}{125} \int \frac {e^{\frac {3 x}{2-5 x}}}{(-2+5 x) \log (x)} \, dx-384 \int \frac {e^{\frac {3 x}{2-5 x}}}{\log ^2(x)} \, dx-384 \int \frac {e^{\frac {6 x}{2-5 x}}}{x \log ^2(x)} \, dx-\frac {10368}{25} \int \frac {e^{\frac {6 x}{2-5 x}}}{(-2+5 x) \log (x)} \, dx+420 \int \frac {x^4}{(-2+5 x)^2 \log ^2(x)} \, dx+512 \int \frac {e^{\frac {3 x}{2-5 x}}}{x \log ^2(x)} \, dx-1020 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-\frac {10368}{5} \int \frac {e^{\frac {9 x}{2-5 x}}}{(-2+5 x)^2 \log (x)} \, dx-\frac {279936}{125} \int \frac {e^{\frac {3 x}{2-5 x}}}{(-2+5 x)^2 \log (x)} \, dx-2724 \int \frac {x^3}{(-2+5 x)^2 \log ^2(x)} \, dx+\frac {93312}{25} \int \frac {e^{\frac {6 x}{2-5 x}}}{(-2+5 x)^2 \log (x)} \, dx+6124 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx+8384 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx-11879 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.42, size = 92, normalized size = 3.54 \begin {gather*} \frac {255+16 e^{\frac {12 x}{2-5 x}}+32 e^{\frac {9 x}{2-5 x}} (-4+x)+24 e^{\frac {6 x}{2-5 x}} (-4+x)^2+8 e^{\frac {3 x}{2-5 x}} (-4+x)^3-256 x+96 x^2-16 x^3+x^4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 99, normalized size = 3.81 \begin {gather*} \frac {x^{4} - 16 \, x^{3} + 96 \, x^{2} + 8 \, {\left (x^{3} - 12 \, x^{2} + 48 \, x - 64\right )} e^{\left (-\frac {3 \, x}{5 \, x - 2}\right )} + 24 \, {\left (x^{2} - 8 \, x + 16\right )} e^{\left (-\frac {6 \, x}{5 \, x - 2}\right )} + 32 \, {\left (x - 4\right )} e^{\left (-\frac {9 \, x}{5 \, x - 2}\right )} - 256 \, x + 16 \, e^{\left (-\frac {12 \, x}{5 \, x - 2}\right )} + 255}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 165, normalized size = 6.35 \begin {gather*} \frac {x^{4} + 8 \, x^{3} e^{\left (-\frac {3 \, x}{5 \, x - 2}\right )} - 16 \, x^{3} - 96 \, x^{2} e^{\left (-\frac {3 \, x}{5 \, x - 2}\right )} + 24 \, x^{2} e^{\left (-\frac {6 \, x}{5 \, x - 2}\right )} + 96 \, x^{2} + 384 \, x e^{\left (-\frac {3 \, x}{5 \, x - 2}\right )} - 192 \, x e^{\left (-\frac {6 \, x}{5 \, x - 2}\right )} + 32 \, x e^{\left (-\frac {9 \, x}{5 \, x - 2}\right )} - 256 \, x - 512 \, e^{\left (-\frac {3 \, x}{5 \, x - 2}\right )} + 384 \, e^{\left (-\frac {6 \, x}{5 \, x - 2}\right )} - 128 \, e^{\left (-\frac {9 \, x}{5 \, x - 2}\right )} + 16 \, e^{\left (-\frac {12 \, x}{5 \, x - 2}\right )} + 255}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 166, normalized size = 6.38
method | result | size |
risch | \(\frac {x^{4}+8 \,{\mathrm e}^{-\frac {3 x}{5 x -2}} x^{3}+24 \,{\mathrm e}^{-\frac {6 x}{5 x -2}} x^{2}+32 \,{\mathrm e}^{-\frac {9 x}{5 x -2}} x +16 \,{\mathrm e}^{-\frac {12 x}{5 x -2}}-16 x^{3}-96 \,{\mathrm e}^{-\frac {3 x}{5 x -2}} x^{2}-192 \,{\mathrm e}^{-\frac {6 x}{5 x -2}} x -128 \,{\mathrm e}^{-\frac {9 x}{5 x -2}}+96 x^{2}+384 x \,{\mathrm e}^{-\frac {3 x}{5 x -2}}+384 \,{\mathrm e}^{-\frac {6 x}{5 x -2}}-256 x -512 \,{\mathrm e}^{-\frac {3 x}{5 x -2}}+255}{\ln \relax (x )}\) | \(166\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x^{4} e^{\frac {12}{5}} - 16 \, x^{3} e^{\frac {12}{5}} + 96 \, x^{2} e^{\frac {12}{5}} - 256 \, x e^{\frac {12}{5}} + 255 \, e^{\frac {12}{5}} + 16 \, e^{\left (-\frac {24}{5 \, {\left (5 \, x - 2\right )}}\right )}\right )} e^{\left (-\frac {12}{5}\right )}}{\log \relax (x)} + \int -\frac {8 \, {\left (25 \, x^{5} e^{\frac {2}{5}} - 320 \, x^{4} e^{\frac {2}{5}} + 1444 \, x^{3} e^{\frac {2}{5}} - 2608 \, x^{2} e^{\frac {2}{5}} + 1472 \, x e^{\frac {2}{5}} - 3 \, {\left (25 \, x^{5} e^{\frac {2}{5}} - 218 \, x^{4} e^{\frac {2}{5}} + 540 \, x^{3} e^{\frac {2}{5}} - 256 \, x^{2} e^{\frac {2}{5}} - 64 \, x e^{\frac {2}{5}}\right )} \log \relax (x) - 256 \, e^{\frac {2}{5}}\right )} e^{\left (-\frac {6}{5 \, {\left (5 \, x - 2\right )}}\right )}}{{\left (25 \, x^{3} e - 20 \, x^{2} e + 4 \, x e\right )} \log \relax (x)^{2}}\,{d x} + \int -\frac {24 \, {\left (25 \, x^{4} - 220 \, x^{3} + 564 \, x^{2} - 2 \, {\left (25 \, x^{4} - 114 \, x^{3} + 36 \, x^{2} + 80 \, x\right )} \log \relax (x) - 352 \, x + 64\right )} e^{\left (-\frac {12}{5 \, {\left (5 \, x - 2\right )}}\right )}}{{\left (25 \, x^{3} e^{\frac {6}{5}} - 20 \, x^{2} e^{\frac {6}{5}} + 4 \, x e^{\frac {6}{5}}\right )} \log \relax (x)^{2}}\,{d x} + \int -\frac {32 \, {\left (25 \, x^{3} e^{\frac {1}{5}} - 120 \, x^{2} e^{\frac {1}{5}} + 84 \, x e^{\frac {1}{5}} - {\left (25 \, x^{3} e^{\frac {1}{5}} - 2 \, x^{2} e^{\frac {1}{5}} - 68 \, x e^{\frac {1}{5}}\right )} \log \relax (x) - 16 \, e^{\frac {1}{5}}\right )} e^{\left (-\frac {18}{5 \, {\left (5 \, x - 2\right )}}\right )}}{{\left (25 \, x^{3} e^{2} - 20 \, x^{2} e^{2} + 4 \, x e^{2}\right )} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.71, size = 150, normalized size = 5.77 \begin {gather*} \frac {16\,{\mathrm {e}}^{-\frac {12\,x}{5\,x-2}}}{\ln \relax (x)}-\frac {256\,x-96\,x^2+16\,x^3-x^4+4\,x\,\ln \relax (x)\,{\left (x-4\right )}^3-255}{\ln \relax (x)}-256\,x+192\,x^2-48\,x^3+4\,x^4+\frac {{\mathrm {e}}^{-\frac {3\,x}{5\,x-2}}\,\left (8\,x^3-96\,x^2+384\,x-512\right )}{\ln \relax (x)}+\frac {{\mathrm {e}}^{-\frac {9\,x}{5\,x-2}}\,\left (32\,x-128\right )}{\ln \relax (x)}+\frac {{\mathrm {e}}^{-\frac {6\,x}{5\,x-2}}\,\left (24\,x^2-192\,x+384\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.83, size = 150, normalized size = 5.77 \begin {gather*} \frac {\left (32 x \log {\relax (x )}^{3} - 128 \log {\relax (x )}^{3}\right ) e^{- \frac {9 x}{5 x - 2}} + \left (24 x^{2} \log {\relax (x )}^{3} - 192 x \log {\relax (x )}^{3} + 384 \log {\relax (x )}^{3}\right ) e^{- \frac {6 x}{5 x - 2}} + \left (8 x^{3} \log {\relax (x )}^{3} - 96 x^{2} \log {\relax (x )}^{3} + 384 x \log {\relax (x )}^{3} - 512 \log {\relax (x )}^{3}\right ) e^{- \frac {3 x}{5 x - 2}} + 16 e^{- \frac {12 x}{5 x - 2}} \log {\relax (x )}^{3}}{\log {\relax (x )}^{4}} + \frac {x^{4} - 16 x^{3} + 96 x^{2} - 256 x + 255}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________