Optimal. Leaf size=25 \[ 8 \left (e^2 x^2+\frac {9 x^2 \log (5+x)}{5 \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {72 x^2 \log (x)+e^2 \left (400 x+80 x^2\right ) \log ^2(x)+\left (-360 x-72 x^2+\left (720 x+144 x^2\right ) \log (x)\right ) \log (5+x)}{(25+5 x) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8}{5} x \left (10 e^2-\frac {9 \log (5+x)}{\log ^2(x)}+\frac {9 (x+2 (5+x) \log (5+x))}{(5+x) \log (x)}\right ) \, dx\\ &=\frac {8}{5} \int x \left (10 e^2-\frac {9 \log (5+x)}{\log ^2(x)}+\frac {9 (x+2 (5+x) \log (5+x))}{(5+x) \log (x)}\right ) \, dx\\ &=\frac {8}{5} \int \left (\frac {x \left (9 x+50 e^2 \log (x)+10 e^2 x \log (x)\right )}{(5+x) \log (x)}+\frac {9 x (-1+2 \log (x)) \log (5+x)}{\log ^2(x)}\right ) \, dx\\ &=\frac {8}{5} \int \frac {x \left (9 x+50 e^2 \log (x)+10 e^2 x \log (x)\right )}{(5+x) \log (x)} \, dx+\frac {72}{5} \int \frac {x (-1+2 \log (x)) \log (5+x)}{\log ^2(x)} \, dx\\ &=\frac {8}{5} \int x \left (10 e^2+\frac {9 x}{(5+x) \log (x)}\right ) \, dx+\frac {72}{5} \int \left (-\frac {x \log (5+x)}{\log ^2(x)}+\frac {2 x \log (5+x)}{\log (x)}\right ) \, dx\\ &=\frac {8}{5} \int \left (10 e^2 x+\frac {9 x^2}{(5+x) \log (x)}\right ) \, dx-\frac {72}{5} \int \frac {x \log (5+x)}{\log ^2(x)} \, dx+\frac {144}{5} \int \frac {x \log (5+x)}{\log (x)} \, dx\\ &=8 e^2 x^2+\frac {72}{5} \int \frac {x^2}{(5+x) \log (x)} \, dx-\frac {72}{5} \int \frac {x \log (5+x)}{\log ^2(x)} \, dx+\frac {144}{5} \int \frac {x \log (5+x)}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 1.04 \begin {gather*} \frac {8}{5} \left (5 e^2 x^2+\frac {9 x^2 \log (5+x)}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 25, normalized size = 1.00 \begin {gather*} \frac {8 \, {\left (5 \, x^{2} e^{2} \log \relax (x) + 9 \, x^{2} \log \left (x + 5\right )\right )}}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 25, normalized size = 1.00 \begin {gather*} \frac {8 \, {\left (5 \, x^{2} e^{2} \log \relax (x) + 9 \, x^{2} \log \left (x + 5\right )\right )}}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.88
method | result | size |
risch | \(8 x^{2} {\mathrm e}^{2}+\frac {72 x^{2} \ln \left (5+x \right )}{5 \ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 25, normalized size = 1.00 \begin {gather*} \frac {8 \, {\left (5 \, x^{2} e^{2} \log \relax (x) + 9 \, x^{2} \log \left (x + 5\right )\right )}}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.16, size = 21, normalized size = 0.84 \begin {gather*} 8\,x^2\,{\mathrm {e}}^2+\frac {72\,x^2\,\ln \left (x+5\right )}{5\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 22, normalized size = 0.88 \begin {gather*} 8 x^{2} e^{2} + \frac {72 x^{2} \log {\left (x + 5 \right )}}{5 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________